Искусственный интеллект связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами[2].
До 2020-х годов интеллектуальные системы имели достаточно узкие области применения. Например, программы, способные обыграть человека в шахматы, как правило, не могли отвечать на вопросы[3]. С выпуском ChatGPT в 2022 году и его аналогов, искусственный интеллект стал способным отвечать на вопросы[4].
Процитированное в преамбуле определение искусственного интеллекта, данное Джоном Маккарти в 1956 году на семинаре в Дартмутском университете, не связано напрямую с пониманием интеллекта у человека. Согласно Маккарти, исследователи вольны использовать методы, которые не наблюдаются у людей, если это необходимо для решения конкретных проблем[2].
Поясняя своё определение, Джон Маккарти указывает: «Проблема состоит в том, что пока мы не можем в целом определить, какие вычислительные процедуры мы хотим называть интеллектуальными. Мы понимаем некоторые механизмы интеллекта и не понимаем остальные. Поэтому под интеллектом в пределах этой науки понимается только вычислительная составляющая способности достигать целей в мире»[2].
В то же время существует и точка зрения, согласно которой интеллект может быть только биологическим феноменом[5].
В английском языке словосочетание artificial intelligence не имеет антропоморфной окраски, которую оно приобрело в традиционном русском переводе: слово intelligence в используемом контексте скорее означает «умение рассуждать разумно», а вовсе не «интеллект» (для которого есть английский аналог intellect[6].
Даются следующие определения искусственного интеллекта:
Научное направление, в рамках которого ставятся и решаются задачи аппаратного или программного моделирования тех видов человеческой деятельности, которые традиционно считаются интеллектуальными[1].
Свойство интеллектуальных систем выполнять функции (творческие), которые традиционно считаются прерогативой человека. При этом интеллектуальная система — это техническая или программная система, способная решать задачи, традиционно считающиеся творческими, принадлежащие конкретной предметной области, знания о которой хранятся в памяти такой системы. Структура интеллектуальной системы включает три основных блока — базу знаний, решатель и интеллектуальный интерфейс, позволяющий вести общение с ЭВМ без специальных программ для ввода данных[1].
Направление в информатике и информационных технологиях, задачей которого является воссоздание с помощью вычислительных систем и иных искусственных устройств разумных рассуждений и действий[7].
Способность системы правильно интерпретировать внешние данные, извлекать уроки из таких данных и использовать полученные знания для достижения конкретных целей и задач при помощи гибкой адаптации[8].
Одно из частных определений интеллекта, общее для человека и «машины», можно сформулировать так: «Интеллект — способность системы создавать в ходе самообучения программы (в первую очередь эвристические) для решения задач определённого класса сложности и решать эти задачи»[9].
Предпосылки развития науки искусственного интеллекта[править | править код]
История искусственного интеллекта как нового научного направления начинается в середине XX века. К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений — теории алгоритмов — и были созданы первые компьютеры.
Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе зародился вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека? В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг, пишет статью под названием «Может ли машина мыслить?»[10], в которой описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившую название теста Тьюринга.
История развития искусственного интеллекта в СССР и России[править | править код]
Коллежский советникСемён Николаевич Корсаков (1787—1853) ставил задачу усиления возможностей разума посредством разработки научных методов и устройств, перекликающуюся с современной концепцией искусственного интеллекта, как усилителя естественного. В 1832 году С. Н. Корсаков опубликовал описание пяти изобретённых им механических устройств, так называемых «интеллектуальных машин», для частичной механизации умственной деятельности в задачах поиска, сравнения и классификации. В конструкции своих машин Корсаков впервые в истории информатики применил перфорированные карты, игравшие у него своего рода роль баз знаний, а сами машины по существу являлись предтечами экспертных систем[11][12].
В СССР работы в области искусственного интеллекта начались в 1960-х годах[7]. В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д. А. Поспеловым. С начала 1960-х М. Л. Цетлин с коллегами разрабатывали вопросы, связанные с обучением конечных автоматов.
В 1968 году вышла книга советского философа Э. В. Ильенкова «Об идолах и идеалах», в которой обосновывалась невозможность создания машины умнее человека[13].
По инициативе Г. С. Поспелова 10 сентября 1986 года при Президиуме АН СССР был создан Научный совет по проблеме «Искусственный интеллект» (председателем совета стал Г. С. Поспелов, его заместителями — Д. А. Поспелов и Э. В. Попов). Позже этот совет сыграл важную роль в развитии исследований по искусственному интеллекту в России и в целом в СССР.
В России 30 мая 2019 года на совещании по развитию цифровой экономики под председательством В. В. Путина было принято решение о подготовке национальной стратегии по искусственному интеллекту. В её рамках готовится федеральная программа с выделением 90 млрд рублей[14].
10 октября 2019 года В. В. Путин своим указом утвердил национальную стратегию развития искусственного интеллекта в России до 2030 года[15].
27 августа 2020 года был утверждён национальный проект «Искусственный интеллект», руководителем которого была назначена заместитель министра экономического развития Оксана Тарасенко[16][17].
В декабре 2020 года вторая конференция по искусственному интеллекту Artificial Intelligence Journey (AI Journey) вошла в топ-3 аналогичных форумов в мире. В ней участвовало (онлайн) более 20000 человек из 80 стран, в работе конференции принял участие Владимир Путин[18][19].
Весной 2021 года Председатель Правительства Михаил Мишустин утвердил правила выделения финансовой поддержки компаний, занятых в сфере искусственного интеллекта, в размере 1,4 млрд.руб (на 2021 год)[20].
2 февраля 2024 года Михаил Мишустин заявил, что внедрение технологий искусственного интеллекта в России к 2030 году даст прирост в экономике страны в 6 %. В денежном выражении это более 10 триллионов рублей[21].
Единого ответа на вопрос, чем занимается искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об искусственном интеллекте, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки.
В философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла — Саймона. Поэтому, несмотря на наличие множества подходов как к пониманию задач искусственного интеллекта, так и созданию интеллектуальных информационных систем, можно выделить два основных подхода к разработке искусственного интеллекта[22]:
Последний подход, строго говоря, не относится к науке об искусственном интеллекте в смысле, данном Джоном Маккарти, — их объединяет только общая конечная цель.
Эмпирический тест был предложен Аланом Тьюрингом в статье «Вычислительные машины и разум» (англ.Computing Machinery and Intelligence)[23], опубликованной в 1950 году в философском журнале «Mind». Целью данного теста является определение возможности искусственного мышления, близкого к человеческому.
Стандартная интерпретация этого теста звучит следующим образом: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы — ввести человека в заблуждение, заставив сделать неверный выбор». Все участники теста не видят друг друга.
Самый общий подход предполагает, что искусственный интеллект будет способен проявлять поведение, не отличающееся от человеческого, причём в нормальных ситуациях. Эта идея является обобщением подхода теста Тьюринга, который утверждает, что машина станет разумной тогда, когда будет способна поддерживать разговор с обычным человеком, и тот не сможет понять, что говорит с машиной (разговор идёт по переписке).
Писатели-фантасты часто предлагают ещё один подход: искусственный интеллект возникнет тогда, когда машина будет способна чувствовать и творить. Так, хозяин Эндрю Мартина из «Двухсотлетнего человека» начинает относиться к нему как к человеку, когда тот создаёт игрушку по собственному проекту. Дейта из «Звёздного пути», будучи способным к коммуникации и обучению, мечтает обрести эмоции и интуицию.
Однако последний подход вряд ли выдерживает критику при более детальном рассмотрении. К примеру, несложно создать механизм, который будет оценивать некоторые параметры внешней или внутренней среды и реагировать на их неблагоприятные значения. Про такую систему можно сказать, что у неё есть чувства («боль» — реакция на срабатывание датчика удара, «голод» — реакция на низкий заряд аккумулятора, и т. п.). Кластеры, создаваемые картами Кохонена, и многие другие продукты «интеллектуальных» систем можно рассматривать как вид творчества.
Исторически символьный подход был первым в эпоху цифровых машин, так как именно после создания Лисп, первого языка символьных вычислений, у его автора возникла уверенность в возможности практически приступить к реализации этими средствами интеллекта. Символьный подход позволяет оперировать слабоформализованными представлениями и их смыслами.
Успешность и эффективность решения новых задач зависит от умения выделять только существенную информацию, что требует гибкости в методах абстрагирования. Тогда как обычная программа устанавливает один свой способ интерпретации данных, из-за чего её работа и выглядит предвзятой и чисто механической. Интеллектуальную задачу в этом случае решает только человек, аналитик или программист, не умея доверить этого машине. В результате создается единственная модель абстрагирования, система конструктивных сущностей и алгоритмов. А гибкость и универсальность выливается в значительные затраты ресурсов для не типичных задач, то есть система от интеллекта возвращается к грубой силе.
Основная особенность символьных вычислений — создание новых правил в процессе выполнения программы. Тогда как возможности не интеллектуальных систем завершаются как раз перед способностью хотя бы обозначать вновь возникающие трудности. Тем более эти трудности не решаются и наконец компьютер не совершенствует такие способности самостоятельно.
Недостатком символьного подхода является то, что такие открытые возможности воспринимаются не подготовленными людьми как отсутствие инструментов. Эту, скорее культурную проблему, отчасти решает логическое программирование.
Логический подход к созданию систем искусственного интеллекта основан на моделировании рассуждений. Теоретической основой служит логика.
Логический подход может быть проиллюстрирован применением для этих целей языка и системы логического программирования Пролог. Программы, записанные на языке Пролог, представляют наборы фактов и правил логического вывода без жесткого задания алгоритма как последовательности действий, приводящих к необходимому результату.
Последний подход, развиваемый с начала 1990-х годов, называется агентно-ориентированным подходом, или подходом, основанным на использовании интеллектуальных (рациональных) агентов. Согласно этому подходу, интеллект — это вычислительная часть (грубо говоря, планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков, и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов.
Гибридный подход предполагает, что только синергийная комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей. Например, экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения. Сторонники данного подхода считают, что гибридные информационные системы будут значительно более сильными, чем сумма различных концепций по отдельности.
Выделяется такое обширное направление как моделирование рассуждений[24]. Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном искусственном интеллекте. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр, планирование и диспетчеризация, прогнозирование.
Немаловажным направлением является обработка естественного языка[25], в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В рамках этого направления ставится цель такой обработки естественного языка, которая была бы в состоянии приобрести знание самостоятельно, читая существующий текст, доступный по Интернету. Некоторые прямые применения обработки естественного языка включают информационный поиск (в том числе, глубокий анализ текста) и машинный перевод[26].
Направление инженерия знаний объединяет задачи получения знаний из простой информации, их систематизации и использования. Это направление исторически связано с созданием экспертных систем — программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.
Проблематика машинного обучения[28] касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Это направление было центральным с самого начала развития искусственного интеллекта[29]. В 1956 году, на Дартмундской летней конференции, Рей Соломонофф написал отчёт о вероятностной машине, обучающейся без учителя, назвав её: «Индуктивная машина вывода»[30].
Обучение без учителя — позволяет распознать образы во входном потоке. Обучение с учителем включает также классификацию и регрессионный анализ. Классификация используется, чтобы определить, к какой категории принадлежит образ. Регрессионный анализ используется, чтобы в рядах числовых примеров входа/выхода и обнаружить непрерывную функцию, на основании которой можно было бы прогнозировать выход. При обучении агент вознаграждается за хорошие ответы и наказывается за плохие. Они могут быть проанализированы с точки зрения теории решений, используя такие понятия как полезность. Математический анализ машинных алгоритмов изучения — это раздел теоретической информатики, известный как вычислительная теория обучения (англ.Computational learning theory).
Отличается от понимания искусственного интеллекта по Джону Маккарти, когда исходят из положения о том, что искусственные системы не обязаны повторять в своей структуре и функционировании структуру и протекающие в ней процессы, присущие биологическим системам. Сторонники данного подхода считают, что феномены человеческого поведения, его способность к обучению и адаптации есть следствие именно биологической структуры и особенностей её функционирования.
Сюда можно отнести несколько направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы — агента, взаимодействующей с внешней средой, называется агентным подходом.
Области робототехники[31] и искусственного интеллекта тесно связаны друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов составляют ещё одно направление искусственного интеллекта. Интеллектуальность требуется роботам, чтобы манипулировать объектами[32], выполнять навигацию с проблемами локализации (определять местонахождение, изучать ближайшие области) и планировать движение (как добраться до цели)[33]. Примером интеллектуальной робототехники могут служить игрушки-роботы Pleo, AIBO, QRIO.
Добавление данной возможности к любой интеллектуальной системе позволяет весьма наглядно продемонстрировать, что именно система воспринимает и как это понимает. Добавлением шума вместо недостающей информации или фильтрация шума имеющимися в системе знаниями производит из абстрактных знаний конкретные образы, легко воспринимаемые человеком, особенно это полезно для интуитивных и малоценных знаний, проверка которых в формальном виде требует значительных умственных усилий.
В перспективе предполагается тесная связь развития искусственного интеллекта с разработкой квантового компьютера, так как некоторые свойства искусственного интеллекта имеют схожие принципы действия с квантовыми компьютерами[35][36].
Можно заметить, что многие области исследований пересекаются. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом искусственном интеллекте.
Известный американский нейрофизиолог Майкл Грациано отмечает принципиальную разницу между ИИ и искусственным сознанием (ИС). По мнению Грациано именно сознание, а не интеллект является существенным отличием высших млекопитающих, включая человека разумного. Моделирование сознания является нерешенной научной задачей[37].
По мнению специалиста в области вычислительных и управляющих систем, академика РАНИгоря Каляева, «если исходить из возможностей сегодняшних технологий, то суперкомпьютер с производительностью 1021 флопс будет обладать габаритами, эквивалентными зданию 300 на 300 метров в основании и 50 метров высотой, и потреблять около 15 гигаватт электроэнергии, что сравнимо с ежесуточным потреблением города Москвы. В то же время человеческий мозг занимает всего лишь 0,0013 м3 объема и потребляет около 20 Ватт. Поэтому я считаю, что все попытки создания аналога человеческого мозга с помощью современных компьютерных технологий — это путь в никуда, поскольку мозг работает по совершенно другим, до сих пор непонятным нам принципам. И чем дальше мы идем по этому пути, тем дальше мы уходим от нашей конечной цели — создания аналога человеческого мозга. Это обстоятельство порождает необходимость поиска альтернативных путей реализации ИИ, в том числе на новых физических принципах, чем сейчас активно занимаются ученые во всем мире, в том числе и в нашей стране»[38].
Можно выделить два направления развития искусственного интеллекта:
решение проблем, связанных с приближением специализированных систем искусственного интеллекта к возможностям человека, и их интеграции, которая реализована природой человека (см. Усиление интеллекта);
создание искусственного разума, представляющего интеграцию уже созданных систем искусственного интеллекта в единую систему, способную решать проблемы человечества.
Но в настоящий момент[когда?] в области искусственного интеллекта наблюдается вовлечение многих предметных областей, имеющих скорее практическое отношение к искусственному интеллекту, а не фундаментальное. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа пока так и не подошла. Ниже представлены лишь некоторые наиболее известные разработки в области искусственного интеллекта.
Watson — перспективная разработка IBM, способная воспринимать человеческую речь и производить вероятностный поиск, с применением большого количества алгоритмов; для демонстрации работы приняла участие в американской игре «Jeopardy!», где системе удалось выиграть в обеих играх[40];
MYCIN — одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно, как и доктора;
20Q — проект по мотивам классической игры «20 вопросов», основанный на идеях искусственного интеллекта; стал очень популярен после появления в Интернете на сайте 20q.net[41];
Разработчики компьютерных игр применяют технологии искусственного интеллекта, направление обозначается как «игровой искусственный интеллект». Стандартными задачами искусственного интеллекта в играх являются нахождение пути в двумерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.
В феврале 2024 года Центр робототехники «Сбера» заявил, что начал работу над искусственным интеллектом для роботов, который будет управлять манипуляторами, мобильными колесными роботами, роботами-собаками и т. д.
В основе ИИ от «Сбер» будет мультимодальная нейронная сеть, имеющая в подчинении фундаментальные модели навигации, манипуляции и планирования движений. Искусственный интеллект будет обучаться новому самостоятельно или по минимальному числу демонстраций[42].
Финансовые учреждения давно используют нейронные сети для выявления подозрительных событий и действий[43]. Использование ИИ в банковской сфере началось ещё в 1987 году, когда Security Pacific National Bank в США создал целевую группу по противодействию мошенничеству и несанкционированному использованию дебетовых карт[44].
Алгоритмическая торговля предполагает использование сложных систем искусственного интеллекта для принятия торговых решений со скоростью, превышающую скорость, на которую способен человеческий организм. Это позволяет делать миллионы сделок в день без какого-либо вмешательства человека. Автоматизированные торговые системы обычно используются крупными институциональными инвесторами[45].
Вместе с тем, результаты отдельных исследований свидетельствуют о том, что, хотя искусственный интеллект и может предсказывать тенденции цен на акции или общие настроения относительно движения финансовых рынков, его точность недостаточна. Модель инвестирования, основанная на искусственном интеллекте, не может быть использована для долгосрочных инвестиций. Точность таких алгоритмов прогнозирования покупки, продажи или владения акциями может привести к потере капитала.
Основываясь на этих результатах, исследователи пришли к выводу, что искусственный интеллект пока не способен предсказывать движение фондового рынка с надежной и достоверной точностью[46].
Исследования рынка и интеллектуальный анализ данных[править | править код]
Несколько крупных финансовых учреждений вложили средства в развитие ИИ, чтобы использовать его в их инвестиционной практике. Разработки Aladdin (BlackRock), используются как внутри компании, так и для клиентов компании, ассистируя в принятии инвестиционных решений. Широкий спектр функциональных возможностей данной системы включает обработку естественного языка для чтения текста, такого как новости, отчёты брокеров и каналы социальных сетей. Затем система оценивает настроения в упомянутых компаниях и присваивает им оценку. Банки, такие как UBS и Deutsche Bank, используют систему ИИ под названием Sqreem (Sequential Quantum Reduction and Extraction Model, Модель Последовательной Квантовой Редукции и Экстракции), которая может обрабатывать данные для разработки профилей потребителей и сопоставлять их с продуктами, которые они, скорее всего, захотят[47]. Goldman Sachs использует Kensho, платформу аналитики рынка, которая объединяет статистические вычисления с большими данными и обработкой естественного языка. Его системы машинного обучения используют данные в Интернете и оценивают корреляции между мировыми событиями и их влиянием на цены финансовых активов[48]. Информация, извлечённая системой ИИ из прямой трансляции новостей, используется в принятии инвестиционных решений.
Существуют продукты, которые используют ИИ для помощи людям в управлении их личными финансами. Например, Digit — это приложение, основанное на искусственном интеллекте, которое автоматически помогает потребителям оптимизировать свои расходы и сбережения, основываясь на своих личных привычках и целях. Приложение может анализировать такие факторы, как ежемесячный доход, текущий баланс и привычки к расходам, затем принимать собственные решения и переводить деньги на отдельный сберегательный счёт[49]. Wallet.AI, развивающийся в Сан-Франциско старт-ап, создаёт агентов, которые анализируют данные, которые генерирует потребитель, при взаимодействии со смартфонами и социальными сетями, чтобы проинформировать потребителя о своих расходах[50].
Автоматизированные помощники-советчики становятся все более широко используемыми в отрасли управления инвестициями. Автоматизированные системы предоставляют финансовые консультации и советы в управлении финансовым портфелем с минимальным вмешательством человека. Этот класс финансовых консультантов работает на основе алгоритмов, созданных для автоматического развития финансового портфеля в соответствии с инвестиционными целями и склонностью к риску клиентов. Он может корректировать изменения в реальном времени на рынке и калибровать портфель в соответствии с пожеланиями клиента[51].
Онлайн-кредитор Upstart анализирует огромное количество потребительских данных и использует алгоритмы машинного обучения для построения моделей кредитного риска, которые прогнозируют вероятность дефолта. Их технология будет лицензирована для банков, чтобы они могли использовать её для оценки своих процессов[52].
ZestFinance разработала платформу Zest Automated Machine Learning (ZAML) специально для кредитного андеррайтинга. Эта платформа использует компьютерное обучение для анализа десятков тысяч традиционных и нетрадиционных переменных (от транзакций покупки до того, каким образом клиент заполняет форму), используемых в кредитной индустрии, для оценки заемщиков. Платформа особенно полезна для присвоения кредитных баллов клиентам с небольшой кредитной истории, таким как миллениалы[53].
Использование искусственного интеллекта позволило «Сбербанку» в 2019 году заработать дополнительно $700 млн, в 2020 году планировалось довести эту сумму до $1 млрд[54].
Для оценки эффективности ИИ мы обычно применяем пять групп метрик: скорость, качество, объективность, персонализация и экономическая эффективность. Во всех отраслях, в том числе в госуправлении, внедрение ИИ обычно ведет к увеличению этих показателей в 5–7 раз.
В 2021 году мероприятия с ИИ начали включать в программы цифровой трансформации всех федеральных органов исполнительной власти.
Применение искусственного интеллекта является важным трендом в создании перспективных систем управления поля боя и вооружением[57].
В феврале 2021 года в США провели испытания искусственного интеллекта в воздушном бою «двое против одного». Новый этап испытаний, который получил название Scrimmage 1, проводился в лаборатории прикладной физики Университета Джонса Хопкинса. В этом воздушном бою два истребителя F-16 Fighting Falcon под управлением искусственного интеллекта действовали в группе и вели бой против одного такого же самолёта. Во время нового этапа испытаний нейросетевые алгоритмы вели не только ближний маневренный воздушный бой, но и действовали на расстоянии от противника, выявляя его с помощью радаров и поражая ракетами на расстоянии.[58]
С помощью искусственного интеллекта возможно обеспечить оптимальный и адаптивный к угрозам выбор комбинации сенсоров и средств поражения, скоординировать их совместное функционирование, обнаруживать и идентифицировать угрозы, оценивать намерения противника[57]. Существенную роль искусственный интеллект играет в реализации тактических систем дополненной реальности, например, позволяет обеспечить классификацию и семантическую сегментацию изображений, локализацию и идентификацию мобильных объектов для эффективного целеуказания[57].
1 марта 2021 года Комитет по безопасности применения искусственного интеллекта)[59] направил Президенту США и Конгрессу США доклад, в котором рекомендуется отвергнуть всемирный запрет на применение автономных систем вооружения на основе искусственного интеллекта. В докладе говорится, что использование искусственного интеллекта позволит «сократить время принятия решений» в тех случаях, когда человек не способен действовать достаточно быстро. Комитет также высказал опасение, что Китай и Россия вряд ли станут соблюдать договор о запрете на применение ИИ в военном деле[60].
Китай
По данным Минобороны США, Китай принял решение о разработке методов внедрения искусственного интеллекта в будущие системы вооружений. Академия военных наук Китая получила задание на реализацию этой программы путем объединения усилий ВПК и частных компаний[61].
Другие задачи в медицине, которые потенциально могут выполняться искусственным интеллектом и начинают разрабатываться, включают:
Компьютерная интерпретация медицинских изображений. Такие системы помогают сканировать цифровые изображения, например от компьютерной томографии, для типичных проявлений и для выделения заметных отклонений, таких как возможные заболевания. Типичным применением является обнаружение опухоли.
14 ноября 2023 года журнал Science опубликовал доклад отом, что нейросеть GraphCast от Google DeepMind впервые превзошла в точности метеопрогноза систему Европейского центра среднесрочных прогнозов погоды[67]. Учитывая, что нейросеть сделала это точнее и гораздо быстрее по 90 % из 1380 проверявшихся параметров (температура, скорость и направление ветра, давление, влажность), этот опыт назвали поворотным моментом в прогнозировании циклонов, ураганов и экстремальных температур[68].
Обитаемая и автономная агротехника выполняет самостоятельные действия в растениеводстве — от сева и культивации, анализа состояния растений и почвы до сбора урожая, когда обученная нейросеть посредством машинного зрения сама определяет степень зрелости агрокультуры и собирает их при помощи манипуляторов, в животноводстве — обслуживание скота.[69]
Хотя эволюция музыки всегда была затронута технологией, искусственный интеллект позволил с помощью научных достижений подражать, в какой-то мере, человекоподобной композиции.
Среди известных ранних результатов — система Дэвида Коупа «Эмили Хауэлл», ставшая известной в области алгоритмической компьютерной музыки. Алгоритм, лежащий в основе Эмили Хауэлл, зарегистрирован как патент США[70].
Другие разработки, такие как AIVA, сосредоточены на сочинении симфоний, в основном классической музыки для фильмов. Эта разработка достигла известности, став первым виртуальным композитором, который был признан музыкальной профессиональной ассоциацией[71].
Искусственный интеллект может даже создавать музыку, пригодную для использования в медицинских условиях, например, Melomics использует компьютерную музыку для снятия стресса и боли[72].
Более того, такие инициативы, как Google Magenta, проводимые командой Google Brain, хотят узнать, способен ли искусственный интеллект создавать неотразимое искусство.
В исследовательской лаборатории Sony CSL их программное обеспечение Flow Machines создаёт поп-песни, изучая стили музыки из огромной базы данных песен. Анализируя уникальные комбинации стилей и методы оптимизации, искусственный интеллект может сочинять музыку в любом существующем стиле.
В декабре 2020 года в России, в рамках конференции AI Journey (организатор Сбербанк, модератор Александр Ведяхин) российские исполнители Zivert, Рахим, Егор Шип и Даня Милохин выступали вместе с искусственным интеллектом[73].
Компания Narrative Science делает компьютерные новости и отчёты коммерчески доступными, включая обобщение спортивных событий на основе статистических данных из игры на английском языке. Она также создаёт финансовые отчёты и анализ недвижимости. Аналогично, компания Automated Insights генерирует персонализированные сводки и превью для Yahoo Sports Fantasy Football. Предполагается, что к 2014 году компания будет создавать миллиард историй в год, по сравнению с 350 миллионами в 2013 году[74].
Ведущие медиа-компании, такие как Associated Press, Forbes, The New York Times, Los Angeles Times и ProPublica, начали автоматизировать новостной контент. Появилось такое понятие, как автоматизированная журналистика[75].
Echobox — компания, разрабатывающая программное обеспечение, которая помогает издателям увеличивать трафик путём «разумного» размещения статей на платформах социальных сетей, таких как Facebook и Twitter. Анализируя большие объёмы данных, искусственный интеллект узнаёт, как конкретные аудитории реагируют на разные статьи в разное время суток. Затем он выбирает лучшие истории для публикации и лучшее время, чтобы опубликовать их. Он использует как исторические данные, так и данные в реальном времени, чтобы понять, что сработало хорошо в прошлом, а также то, что в настоящее время имеет тенденцию в Интернете.
Другая компания, называемая Yseop, использует искусственный интеллект, чтобы превратить структурированные данные в интеллектуальные комментарии и рекомендации на естественном языке. Yseop может писать финансовые отчёты, исполнительные резюме, персонализированные продажи или маркетинговые документы и многое другое со скоростью тысяч страниц в секунду и на нескольких языках, включая английский, испанский, французский и немецкий[76].
Существует также возможность того, что в будущем искусственный интелект будет писать литературные произведения. В 2016 году японская система написала небольшой рассказ, номинированый на литературную премию[77].
Искусственный интеллект реализуется в автоматизированных онлайн-помощниках, которые можно рассматривать как чат-боты на веб-страницах. Это может помочь предприятиям снизить затраты на наем и обучение сотрудников. Основной технологией для таких систем является естественная обработка языка. Pypestream использует автоматизированное обслуживание клиентов для своего мобильного приложения, предназначенного для упрощения связи с клиентами[78].
Многие телекоммуникационные компании используют эвристический поиск в управлении своими сотрудниками, например, BT Group развернула эвристический поиск в приложении для планирования, которое обеспечивает рабочие графики 20 000 инженеров.
Большие надежды возлагаются на использование систем искусственного интеллекта для управления сетями сотовой связи 6G[79].
В 1990-х годах были предприняты первые попытки массового производства ориентированных на дом типов базового искусственного интеллекта для образования или отдыха. Это значительно продвинулось с цифровой революцией и помогло людям, особенно детям, познакомиться с различными типами искусственного интеллекта, в частности, в виде тамагочи и домашних животных, iPod Touch, Интернета и первого широко распространённого робота, Furby. Год спустя улучшенный тип домашнего робота был выпущен в виде Aibo, роботизированной собаки с интеллектуальными функциями и автономией.
Такие компании, как Mattel, создают ассортимент игрушек с поддержкой искусственного интеллекта для детей в возрасте трёх лет. Используя запатентованные системы и средства распознавания речи, они могут понимать разговоры, давать интеллектуальные ответы и быстро учиться[80].
Искусственный интеллект также используется в индустрии игр, например, в видеоиграх используются боты, которые предназначены для того, чтобы играть роль противников, где люди недоступны или нежелательны. В 2018 году исследователи из Корнеллского университета создали пару генеративно-состязательных сетей и обучили их на примере игры-шутераDoom. В процессе обучения нейронные сети определили основные принципы построения уровней этой игры и после этого они стали способны генерировать новые уровни без помощи со стороны людей[81].
В 2024 году прошел первый в истории конкурс красоты среди ИИ-моделей Miss AI. Из 1500 заявок в шорт-лист были отобраны десять. Победительницей стала Кенза Лейли, созданная в Марокко.
Сегодняшние[уточнить] автомобили имеют вспомогательные функции, основанные на искусственном интеллекте, такие как самозаряд[уточнить] и расширенные средства круиз-контроля. Иcкусственный интеллект используется для оптимизации приложений управления дорожным трафиком, что, в свою очередь, сокращает время ожидания, потребление энергии и вредные выбросы на целых 25 %[82]. В будущем будут разработаны полностью автономные автомобили. Ожидается, что искусственный интеллект на транспорте обеспечит безопасную, эффективную и надежную транспортировку, минимизируя пагубное воздействие на окружающую среду и общество. Основной проблемой для развития этого направления является тот факт, что транспортные системы по своей сути являются сложными системами, включающими очень большое количество компонентов и разных сторон, каждый из которых имеет разные и часто противоречивые цели[83].
В июне 2019 года прошло тестирование программно-аппаратного комплекса, работающего по технологии технического зрения, на тепловозеЧМЭ3-1562 приписки депо Лоста Северной железной дороги. В случае опасности (неправильно поставленная стрелка, препятствие на дороге, запрещающий сигнал светофора) система сначала подаёт светозвуковой сигнал машинисту а затем включает торможение[84]. Комплекс, получивший обозначение ПАК-ПМЛ (программно-аппаратный комплекс помощи машинисту локомотива), использует искусственный интеллект, накапливая данные о уже совершённых поездках и используя их при оценке обстановки. В начале сентября 2020 года на станции Лоста начался опытный пробег уже двух ЧМЭ3, оснащённых ПАК-ПМЛ. Пробег является частью пилотного проекта ОАО «РЖД» «Внедрение технологии технического зрения для управления и мониторинга подвижного состава». В свою очередь, этот проект является важным этапом глобального корпоративного проекта «Цифровой локомотив»[85].
Роботы стали распространены во многих отраслях промышленности и часто занимаются работой, которая считается опасной для людей. Роботы оказались эффективными на рабочих местах, связанных с повторяющимися рутинными заданиями, которые могут привести к ошибкам или несчастным случаям из-за снижения концентрации с течением времени. Также широкое применение роботы получили в работе, которую люди могут найти унизительной.
Технологии искусственного интелекта применяются в управлении человеческими ресурсами и рекрутинге: для просмотра резюме и ранжирования кандидатов в соответствии с их уровнем квалификации, для прогнозирования успеха кандидата в заданных ролях через платформы сопоставления должностей, для создания чат-ботов, которые могут автоматизировать повторяющиеся коммуникационные задачи.
В частности, с 2016 по 2017 год корпорация Unilever использовала искусственный интеллект для отбора персонала начального уровня. Unilever использовал игры, основанные на нейробиологии, записанные интервью и анализ лицевых и речевых сигналов, чтобы предсказать успех кандидата в компании. Unilever сотрудничала с Pymetrics и HireVue, чтобы создать новую систему анализа на основе искусственного интеллекта и увеличить число рассматриваемых кандидатов с 15 тыс. до 30 тыс. в течение одного года. Unilever также сократил время на обработку заявлений от 4 месяцев до 4 недель и сэкономил более 50 тыс. часов времени рекрутеров.
В Концепции развития уголовно-исполнительной системы РФ на период до 2030 года, утвержденной распоряжением Правительства РФ в мае 2021 года, использованию ИИ отводилось довольно большое место[86].
В частности, предполагалось
...создание и развитие систем сбора и обработки данных и принятия решений на основе результатов применения искусственного интеллекта в части расположения учреждений уголовно-исполнительной системы, обеспечения безопасности (в том числе с использованием видеоаналитики и прогнозирования поведения осужденных и сотрудников уголовно-исполнительной системы), контроля за лицами, в отношении которых применены меры пресечения, не связанные с заключением под стражу, и контроля за поведением освобожденных.[86]
Система должна распознавать около 60 правонарушений в ШИЗО (штрафной изолятор), в столовой, в отряде строгого режима и других структурах колонии. Также ФСИН собирается интегрировать систему безопасности персонала: например, определять одиночное передвижение сотрудников-женщин, «вступление в неслужебные связи со спецконтингентом» и прочее. В колонии предполагается организовать пропускной режим по биометрическим данным минимум на 50 тысяч шаблонов лиц и отпечатков ладони[87].
Различные средства искусственного интеллекта также широко используются в области обеспечения безопасности, распознавании речи и текста, интеллектуального анализа данных и фильтрации спама в электронной почте. Также разрабатываются приложения для распознавания жестов (понимание языка жестов машинами), индивидуальное распознавание голоса, глобальное распознавание голоса (от множества людей в шумной комнате), распознавание лица для интерпретации эмоций и невербальных сигналов. Другие приложения — это роботизированная навигация, преодоление препятствий и распознавание объектов.
Объединение искусственного интеллекта с экспериментальными данными ускорило создание новой разновидности металлического стекла в 200 раз. Стеклянная природа нового материала делает его более прочным, легким и коррозионно-стойким, чем современная сталь. Группа, возглавляемая учёными Национальной ускорительной лаборатории SLAC Министерства энергетики, Национального института стандартов и технологий и Северо-западного университета США, сообщила о сокращении затрат для обнаружения и улучшения металлического стекла на долю времени и стоимости. Как сообщил представитель группы разработчиков Апурва Мехта[88], «Мы смогли сделать и отобрать 20 000 вариантов за один год»[89].
В 2023 году команда ученых из нескольких японских институтов, в числе которых Национальный институт квантовой науки и технологий и Университета Осаки, заявила, что смогла впервые в мире с помощью технологии искусственного интеллекта визуализировать мысленные изображения объектов и ландшафтов, опираясь на данные об активности человеческого мозга. В частности, были созданы приблизительные изображения леопарда с узнаваемым ртом, ушами и пятнистым рисунком, а также самолет с огнями на крыльях и другие картинки. Активность человеческого мозга измерялась с помощью функциональной магнитно-резонансной томографии (фМРТ, fMRI).Результаты были опубликованы в международном научном журнале Neural Networks. Технология получила название «декодирование мозга» (brain decoding)[90].
Искусственный интеллект и нейрофизиология, эпистемология, когнитивная психология образуют более общую науку, называемую когнитология. Важную роль в искусственном интеллекте играет философия. Также с проблемами искусственного интеллекта тесно связана эпистемология — наука о знании в рамках философии. Философы, занимающиеся данной проблематикой, решают вопросы, схожие с теми, которые решаются инженерами о том, как лучше представлять и использовать знания и информацию.
Методология когнитивного моделирования предназначена для анализа и принятия решений в плохо определённых ситуациях. Была предложена Робертом Аксельродом[91].
Основана на моделировании субъективных представлений экспертов о ситуации и включает: методологию структуризации ситуации: модель представления знаний эксперта в виде знакового орграфа (когнитивной карты) (F, W), где F — множество факторов ситуации, W — множество причинно-следственных отношений между факторами ситуации; методы анализа ситуации. В настоящее время методология когнитивного моделирования развивается в направлении совершенствования аппарата анализа и моделирования ситуации. Здесь предложены модели прогноза развития ситуации; методы решения обратных задач.
В апреле 2024 года учёные Стэнфордского университета выявили потенциал искусственного интеллекта в определении политических убеждений человека на основе анализа его фотографий. В эксперименте было задействовано около 600 добровольцев. Во время сканирования фотографий искусственный интеллект с точностью до 70% определял политические взгляды людей. Например, у либералов оказался меньше подбородок, губы и нос направлены вниз, а у консерваторов широкие скулы и крупные черты лица[92][93].
Наука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве.
Философские проблемы создания искусственного интеллекта можно разделить на две группы, условно говоря, «до и после разработки искусственного интеллекта». Первая группа отвечает на вопрос: «Что такое искусственный интеллект, возможно ли его создание, и, если возможно, то как это сделать?» Вторая группа (этика искусственного интеллекта) задаётся вопросом: «Каковы последствия создания искусственного интеллекта для человечества?».
Течение трансгуманизма считает создание искусственного интеллекта одной из важнейших задач человечества.
Среди исследователей до сих пор не существует какой-либо доминирующей точки зрения на критерии интеллектуальности, систематизацию решаемых целей и задач, нет даже строгого определения науки. Существуют разные точки зрения на вопрос, что считать интеллектом.
Наиболее горячие споры в философии искусственного интеллекта вызывает вопрос возможности мышления творения человеческих рук. Вопрос «Может ли машина мыслить?», который подтолкнул исследователей к созданию науки о моделировании человеческого разума, был поставлен Аланом Тьюрингом в 1950 году. Две основных точки зрения на этот вопрос носят названия гипотез сильного и слабого искусственного интеллекта.
Термин «сильный искусственный интеллект» ввёл Джон Сёрль, его же словами подход и характеризуется:
Более того, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум — это разум[94].
Мысленный эксперимент «Китайская комната» Джона Сёрля — аргумент в пользу того, что прохождение теста Тьюринга не является критерием наличия у машины подлинного процесса мышления. Аналогичную позицию занимает и Роджер Пенроуз, который в своей книге «Новый ум короля» аргументирует невозможность получения процесса мышления на основе формальных систем[95].
В опубликованной в журнале Science в 2018 году статье, Мэтью Хатсон показывает, что область искусственного интеллекта на момент публикации находится в кризисе репликации результатов[96]. По мнению автора и проинтервьюированных им специалистов кризис связан со сложившейся в области практикой закрытости кода и данных.
Елиезер Юдковски исследует в Исследовательском институте машинного интеллекта (SIAI) в США проблемы глобального риска, которые может создать будущий сверхчеловеческий искусственный интеллект, если его не запрограммировать на дружественность к человеку[97]. В 2004 году SIAI был создан сайт AsimovLaws.com, созданный для обсуждения этики искусственного интеллекта в контексте проблем, затронутых в фильме «Я, робот». На этом сайте они хотели показать, что законы робототехники Азимова небезопасны, поскольку, например, могут побудить искусственный интеллект захватить власть на Земле, чтобы «защитить» людей от вреда.
Далай-лама XIV считает, что нельзя утверждать, что машины обладают сознанием или способностью к познаванию, а утверждение о том, что сознание появляется в силу материальных причин, с точки зрения буддизма неприемлемо[98].
Другие традиционные конфессии достаточно редко описывают проблематику искусственного интеллекта. Отдельные богословы обращают внимание на предмет, например, протоиерей Михаил Захаров[99], рассуждая с точки зрения христианского мировоззрения, ставит следующий вопрос: «Человек есть разумно-свободное существо, сотворенное Богом по Его образу и подобию. Мы привыкли все эти определения относить к биологическому виду Homo Sapiens. Но насколько это обосновано?»[100]. Отвечает он на этот вопрос так:
Если предположить, что исследования в области искусственного интеллекта когда-либо приведут к появлению искусственного существа, превосходящего человека по интеллекту, обладающего свободой воли, будет ли это означать, что это существо — человек? … человек есть творение Божие. Можем ли мы это существо назвать творением Божиим? На первый взгляд, оно есть творение человека. Но и при сотворении человека вряд ли стоит буквально понимать, что Бог Своими руками из глины вылепил первого человека. Вероятно это иносказание, указывающее на материальность человеческого тела, созданного по воле Божией. Но без воли Божией ничего не происходит в этом мире. Человек, как сотворец этого мира, может, исполняя волю Божию, создавать новые твари. Такие твари, созданные руками человека по Божией воле, вероятно можно назвать творениями Божиими. Ведь человек создает новые виды животных и растений. А мы считаем растения и животных творениями Божиими. Так же можно относиться и к искусственному существу не биологической природы.
В романе «Выбор по Тьюрингу» писателя-фантаста Гарри Гаррисона и учёного Марвина Мински[101] поднимется вопрос утраты человечности у человека, в мозг которого была вживлена ЭВМ, и появления человечности у машины с искусственным интеллектом, в память которой была скопирована информация из головного мозга человека.
Некоторые научные фантасты, например Вернор Виндж, также размышляли над последствиями появления искусственного интеллекта, которое, по-видимому, вызовет резкие драматические изменения в обществе. Такой период называют технологической сингулярностью.
Тема искусственного интеллекта рассматривается под разными углами в творчестве Роберта Хайнлайна: гипотеза возникновения самоосознания при усложнении структуры далее определённого критического уровня и наличии взаимодействия с окружающим миром и другими носителями разума («The Moon Is a Harsh Mistress», «Time Enough For Love», персонажи Майкрофт, Дора и Ая в цикле «История будущего»), проблемы развития после гипотетического самоосознания и некоторые социально-этические вопросы («Friday»). Социально-психологические проблемы взаимодействия человека с искусственным интеллектом рассматривает и роман Филипа К. Дика «Снятся ли андроидам электроовцы?», известный также по экранизации «Бегущий по лезвию».
В творчестве фантаста и философа Станислава Лема описано и во многом предвосхищено создание виртуальной реальности, искусственного интеллекта, нанороботов и многих других проблем философии искусственного интеллекта. Особенно стоит отметить футурологию «Сумма технологии». Кроме того, в приключениях Ийона Тихого неоднократно описываются взаимоотношения живых существ и машин: бунт бортового компьютера с последующими неожиданными событиями (11 путешествие), адаптация роботов в человеческом обществе («Стиральная трагедия» из «Воспоминаний Ийона Тихого»), построение абсолютного порядка на планете путём переработки живых жителей (24-ое путешествие), изобретения Коркорана и Диагора («Воспоминания Ийона Тихого»), психиатрическая клиника для роботов («Воспоминания Ийона Тихого»). Кроме того, существует целый цикл повестей и рассказов «Кибериада», где почти всеми персонажами являются роботы, которые являются далёкими потомками роботов, сбежавших от людей (людей они именуют бледнотиками и считают их мифическими существами).
С 30 сентября 2024 года Microsoft объявила об ужесточении правил использования искусственного интеллекта, в частности речь идёт о введении запрета на использование данных, сгенерированных с помощью её ИИ, для обучения других моделей[102].
Применение искусственного интеллекта в некоторых случаях создает правовые вопросы. Так, Стивен Тейлер (Stephen Thaler) изобрел «машину, назначение которой — делать изобретения», которую он назвал DABUS (Device for Autonomous Bootstraping of Unified Sentience, устройство для автономного создания объединенного сознания). Она «изобрела» пищевой контейнер и сигнальный фонарик оригинальной конструкции. Стивен Тейлер подал в Великобритании заявки для получения патентов на эти изобретения. Однако регистрирующий орган отказался принять эти заявки к рассмотрению. Стивен Тейлер обжаловал этот отказ, и дело в 2021 году дошло до Апелляционного Суда Англии и Уэльса. В итоге Стивен Тейлер проиграл это дело, однако в ЮАР он смог получить патенты на изобретения, сделанные при помощи DABUS[103].
Американская художница Кристина Каштанова создала комикс Zarya of the Dawn. Иллюстрации были сгенерированы по запросам художницы нейросетью Midjourney, тексты она писала сама. На обложке книги авторами значатся Kashtanova и Midjourney. Каштанова направила в Бюро авторского права США запрос на регистрацию своего авторского права на книгу (это не является обязательным для признания авторского права, но желательно на случай будущих судебных разбирательств). Бюро авторского права США сначала зарегистрировало авторское право, но затем в 2023 году объявило о своём намерении аннулировать ранее выданный сертификат и выдать новый, согласно которому авторское право будет покрывать только подбор и расположение картинок, а также сопроводительный текст[104].
В мире все чаще задумываются о регулировании ИИ на государственном и международном уровне. 30 октября 2023 года администрация президента США опубликовала указ, требующий от американских компаний, занимающихся ИИ, предоставлять властям исчерпывающую информацию о результатах испытаний на безопасность, прежде чем выпускать модели искусственного интеллекта[105]. 1-2 ноября 2023 года в Великобритании прошел Международный саммит по безопасному использованию искусственного интеллекта, на котором 28 государствами-участниками была подписана первая в истории совместная декларация по безопасному применению искусственного интеллекта.
13 марта 2024 года Европейский парламент одобрил первый в мире комплексный закон по регулированию искусственного интеллекта[106]. Закон классифицирует все основанные на ИИ системы и инструменты по уровню риска — от низкого до неприемлемого. Он предусматривает запрет на использование систем распознавания лиц и других систем «удаленной биометрической идентификации» в режиме реального времени в общественных местах, а также систем распознавания эмоций. Также запрещено будет использование полицией систем предиктивной аналитики для профилактики правонарушений и т. д. Кроме того, закон довольно жестко регулирует генеративный ИИ (такой как ChatGPT) и «высокорисковые системы, основанные на ИИ», среди которых беспилотные автомобили и медицинское оборудование[107]. 21 мая 2024 года Совет Евросоюза утвердил закон[108].
21 марта 2024 года первую резолюцию, направленную на регулирование искусственного интеллекта, приняла Генеральная Ассамблея ООН. Её представили США, соавторами выступили более чем 120 стран[109]. Документ «Использование возможностей безопасных, защищенных и надежных систем искусственного интеллекта для устойчивого развития» содержит 13 пунктов, он призывает государства к сотрудничеству и преодолению разрыва в сфере ИИ[110].
1 апреля 2024 года[111] США и Великобритания подписали соглашение по искусственному интеллекту. Документ стал первой в мире двусторонней договоренностью в области обеспечения безопасности ИИ[112].
В июле 2024 года регуляторы США, Евросоюза и Великобритании подписали совместное заявление о намерении обеспечить эффективную конкуренцию и защиту прав потребителей в сфере искусственного интеллекта[113].
В июле 2024 года Human Rights Watch опубликовала данные о том, что высокотехнологичные компании при обучении искусственного интеллекта используют биометрические данные детей без согласия их родителей, что нарушает законы ряда стран о неприкосновенности личных данных граждан. Разработчики используют фотографии несовершеннолетних, взятые в сети, при обучении ИИ алгоритмам по распознаванию людей разных возрастов[114].
В Российской Федерации вопросы, связанные с искусственным интеллектом отражаются в положениях ряда указов Президента и законов РФ[115].
Задачи искусственного интеллекта сформированы в Указе Президента Российской Федерации «О развитии искусственного интеллекта в Российской Федерации»[116].
Задача создания комплексной системы регулирования общественных отношений, возникающих в связи с развитием и использованием технологий искусственного интеллекта, а также определение понятия «искусственный интеллект» как комплекса технологических решений, позволяющего имитировать когнитивные функции человека (включая самообучение и поиск решений без заранее заданного алгоритма) и получать при выполнении конкретных задач результаты, сопоставимые, как минимум, с результатами интеллектуальной деятельности человека, представлены в Федеральном законе «О проведении эксперимента по установлению специального регулирования в целях создания необходимых условий для разработки и внедрения технологий искусственного интеллекта в субъекте Российской Федерации – городе федерального значения Москве»[117].
В распоряжении Правительства Российской Федерации «Об утверждении Концепции развития регулирования отношений в сфере технологий искусственного интеллекта и робототехники на период до 2024 г.»[118] указано, что одной из основных проблем в правовом регулировании является правовой режим результатов интеллектуальной деятельности, созданных с использованием систем искусственного интеллекта. Автором произведения в соответствии с Гражданским кодексом является гражданин, творческим трудом которого создано произведение. Также в Постановлении Пленума Верховного Суда Российской Федерации «О применении части четвертой Гражданского кодекса Российской Федерации»[119] указывается, что творческий характер создания произведения не зависит от того, создано произведение автором собственноручно или с использованием технических средств. Таким образом, искусственный интеллект на настоящий момент не наделяется авторскими правами в России. Исходя из норм российского права, искусственный интеллект рассматривают только в качестве инструмента при создании объекта авторских прав.
↑ 123Slyusar, VadymArtificial intelligence as the basis of future control networks. (неопр.)Coordination problems of military technical and devensive industrial policy in Ukraine. Weapons and military equipment development perspectives/ VII International Scientific and Practical Conference. Abstracts of reports. - October 8–10, 2019. - Kyiv. - Pp. 76 - 77. - DOI: 10.13140/RG.2.2.30247.50087 (2019). Дата обращения: 28 апреля 2020. Архивировано 26 июня 2021 года.
↑United States, National Science and Technology Council – Committee on Technology. Executive Office of the President. (2016). Preparing for the future of artificial intelligence.
↑Николай Порецкий.Локомотив всё видит // «Гудок» : Газета (электронная версия). — ИД «Гудок», 2019. — 3 июля (№ 115 (26724)). Архивировано 16 сентября 2020 года.
Компьютер учится и рассуждает (ч. 1) // Компьютер обретает разум = Artificial Intelligence Computer Images / под ред. В. Л. Стефанюка. — Москва: Мир, 1990. — 240 с. — 100 000 экз. — ISBN 5-03-001277-X (рус.); ISBN 0705409155 (англ.).
Бондаренко, В. М. Технологическое развитие, информационное общество, искусственный интеллект: настоящее и будущее России и мира / В. М. Бондаренко // Информационное общество. – 2023. – № 6. – С. 2-12;
Бруссард М. Искусственный интеллект. Пределы возможного. — М.: Альпина нон-фикшн, 2020. — ISBN 978-5-00139-080-0.
Грациано М. Наука сознания. Современная теория субъективного опыта = Michael S. A. Graziano. Rethinking Consciousness: A Scientific Theory of Subjective Experience. — М.: Альпина нон-фикшн, 2021. — 254 с. — (Книги Политеха). — ISBN 978-5-00139-208-8.
Девятков В. В. Системы искусственного интеллекта / Гл. ред. И. Б. Фёдоров. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2001. — 352 с. — (Информатика в техническом университете). — 3000 экз. — ISBN 5-7038-1727-7.
Бутл Р. Искусственный интеллект и экономика. Работа, богатство и благополучие в эпоху мыслящих машин = Roger Bootle. The AI Economy: Work, Wealth and Welfare in the Age of the Robot. — М.: Интеллектуальная Литература, 2022. — 432 с. — ISBN 978-5-907394-25-4.
Жданов А. А. Автономный искусственный интеллект. — М.: БИНОМ. Лаборатория знаний, 2009. — 359 с. — 20 000 экз.
Киссинджер Г., Шмидт Э., Хоттенлокер Д. Искусственный разум и новая эра человечества = THE AGE OF AI: AND OUR HUMAN FUTURE. — М.: Альпина ПРО, 2022. — 200 с. — ISBN 978-5-907534-65-0.
Лорьер Ж.-Л. Системы искусственного интеллекта. — М.: Мир, 1991. — 568 с. — 20 000 экз. — ISBN 5-03-001408-X.
Люгер Дж. Ф. Искусственный интеллект: стратегии и методы решения сложных проблем = Artificial Intelligence: Structures and Strategies for Complex Problem Solving / Под ред. Н. Н. Куссуль. — 4-е изд. — М.: Вильямс, 2005. — 864 с. — 2000 экз. — ISBN 5-8459-0437-4.
Нильсон Н. Искусственный интеллект. — М.: Мир, 1973. — 273 с.
Петрунин Ю. Ю., Рязанов М. А., Савельев А. В. Философия искусственного интеллекта в концепциях нейронаук. (Научная монография). — М.: МАКС Пресс, 2010. — ISBN 978-5-317-03251-7.
Рассел С., Норвиг П. Искусственный интеллект: современный подход = Artificial Intelligence: a Modern Approach / Пер. с англ. и ред. К. А. Птицына. — 2-е изд. — М.: Вильямс, 2006. — 1408 с. — 3000 экз. — ISBN 5-8459-0887-6.
Смолин Д. В. Введение в искусственный интеллект: конспект лекций. — М.: ФИЗМАТЛИТ. — 208 с. — ISBN 5-9221-0513-2.
Хант Э.Искусственный интеллект = Artificial intelligence / Под ред. В. Л. Стефанюка. — М.: Мир, 1978. — 558 с. — 17 700 экз.