Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 апреля 2018 года; проверки требуют 19 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 апреля 2018 года; проверки требуют 19 правок.
Системы роевого интеллекта, как правило, состоят из множества агентов (боидов) локально взаимодействующих между собой и с окружающей средой. Идеи поведения, как правило, исходят от природы, а в особенности, от биологических систем. Каждый боид следует очень простым правилам и, несмотря на то, что нет какой-то централизованной системы управления поведения, которая бы указывала каждому из них на то, что ему следует делать, локальные и, в некоторой степени, случайные взаимодействия приводят к возникновению интеллектуального группового поведения, неконтролируемого отдельными боидами. Точное определение роевого интеллекта всё еще не сформулировано. В целом, РИ должен представлять собой многоагентную систему, которая бы обладала самоорганизующимся поведением, которое, суммарно, должно проявлять некоторое разумное поведение.
Применение роевых принципов в робототехнике называют групповой робототехникой, в то время как понятие «роевой интеллект» относится к более общему набору алгоритмов. «Роевое прогнозирование» применяется в решении некоторых задач прогнозирования.
Метод роя частиц, МРЧ (англ.Particle Swarm Optimization, PSO) — метод численной оптимизации, для использования которого не нужно знать точного градиента оптимизируемой функции. МРЧ был доказан Кеннеди, Эберхартом и Шии, изначально предназначался для имитации социального поведения. Алгоритм был упрощен, и было отмечено, что он пригоден для выполнения оптимизации. Книга Кеннеди и Эберхарта описывает много философских аспектов МРЧ и так называемого роевого интеллекта. Большое исследование приложений МРЧ сделано Поле[3][4].
МРЧ оптимизирует функцию, поддерживая популяцию возможных решений, называемых частицами, и перемещая эти частицы в пространстве решений согласно простой формуле. Перемещение подчиняется принципу наилучшего найденного в этом пространстве положения, постоянно изменяется при нахождении частицами выгодных положений.
Муравьиный алгоритм (алгоритм оптимизации муравьиной колонии, англ.ant colony optimization, ACO) — один из эффективных полиномиальных алгоритмов для нахождения приближенных решений задачи коммивояжера, а также аналогичных задач поиска маршрутов на графах. Подход предложенный бельгийским исследователем Марко Дориго (Marco Dorigo).
Суть подхода заключается в анализе и использовании модели поведения муравьёв, ищущих пути от колонии до еды. В основе алгоритма лежит поведение муравьиной колонии — маркировка удачных дорог большим количеством феромона. Работа начинается с размещения муравьёв в вершинах графа (городах), затем начинается движение муравьёв — направление определяется вероятностным методом, на основании формулы:
,
где:
— Вероятность перехода дорогой ,
— Длина -ого перехода,
— Количество феромонов на -ом переходе,
— Величина, определяющая «жадность» алгоритма,
— Величина, которая определяет «стадность» алгоритма і
Искусственный алгоритм пчелиной семьи (англ.artificial bee colony optimization, ABC) — алгоритм роя на основе мета-эвристического алгоритма, введённого Карабогом в 2005 году[5]. Он имитирует поведение кормовых медоносных пчел. Алгоритм ABC состоит из трех этапов: рабочей пчелы, пчелы-надзирателя, и пчелы-разведчика. Пчелы используют алгоритм локального поиска в окрестности решений, выбранных на основе детерминированного отбора рабочими пчелами и вероятностного отбора пчелами-надзирателями. Пчела-разведчик выполняет отказ от истощенных источников питания в кормовом процессе. По этой аналогии решения, которые больше не полезны для поиска решения, отбрасываются и добавляются новые решения (по аналогии с исследованием новых регионов в поиске источников).
Искусственная иммунная система (ИИС) — это адаптивная вычислительная система, использующая модели, принципы, механизмы и функции, описанные в теоретической иммунологии, которые применяются для решения прикладных задач[6].
Несмотря на то, что природные иммунные системы изучены далеко не полностью, на сегодня существуют по меньшей мере три теории, объясняющие функционирование иммунной системы и описывающие взаимодействие её элементов, а именно: теория отрицательного отбора, теория клональной селекции и теория иммунной сети. Они легли в основу создания трех алгоритмов функционирования ИИС.
Алгоритм гравитационного поиска (англ.Gravitational Search Algorithm, GSA) — алгоритм поиска, основанный на законе всемирного тяготения и понятиях массового взаимодействия. Алгоритм основывается на теории притяжения из физики Ньютона. В алгоритме в качестве поисковых агентов используются гравитационные массы.
В последние годы были разработаны различные эвристические алгоритмы оптимизации. Многие из этих алгоритмов основаны на природных явлениях. Если сравнивать алгоритм гравитационного поиска с другими алгоритмами, то данный алгоритм - один из самых эффективных в решении различных задач оптимизации нелинейных функций.
Исследователи из Швейцарии разработали алгоритм, основанный на правиле Гамильтона семейной селекции. Алгоритм показывает, как альтруизм особи в рое может со временем развиваться и приведет к более эффективному поведению роя[7][8].
Алгоритм интеллектуальных капель воды (англ.IWD) — алгоритм роя на основе алгоритма оптимизации, который использует методы естественных рек и как они находят почти оптимальные пути к месту назначения.
Он находит оптимальные или близкие к оптимальным пути, получаемые из протекающих между каплями воды реакциями, когда вода течет по руслу реки. В IWD алгоритме несколько искусственных капель воды зависят друг от друга и способны изменять своё окружение таким образом, что находят оптимальный путь на пути наименьшего сопротивления. Итак, IWD алгоритм это конструктивный популяционно-ориентированный алгоритм оптимизации[9].
Алгоритм кукушки (Cuckoo search) представляет собой оптимизированный алгоритм, разработанный Ян Синьшэ (Xin-She Yang) и Суашем Дебом (Suash Deb) в 2009 году.
Вдохновением для его создания послужил гнездовой паразитизм некоторых видов кукушек, что подкладывают свои яйца в гнезда других птиц (других видов птиц). Некоторые из владельцев гнезд могут вступить в прямой конфликт с кукушками, что врываются к ним. Например, если владелец гнезда обнаружит, что яйца не его, то он или выбросит эти чужие яйца или просто покинет гнездо создаст новое где-то в другом месте.
Некоторые виды кукушек, такие как гнездовые паразиты с Нового мира, например полосатая или четырёхкрылая кукушка (Tapera naevia), эволюционировали таким образом, что самки очень часто специализируются на имитации цветов и структуры яиц избранных видов птиц-хозяев[10].
Саймон Д. Алгоритмы эволюционной оптимизации. — М.: ДМК Пресс, 2020. — 940 с. — ISBN 978-5-97060-812-8.
Субботін С. О., Олійник А. О., Олійник О. О. Неітеративні, еволюційні та мультиагентні методи синтезу нечіткологічних і нейромережних моделей: Монографія / Під заг. ред. С. О. Субботіна. — Запоріжжя: ЗНТУ, 2009. — 375 с.
Миллер, П. Роевой интеллект: Муравьи, пчелы и птицы способны многому нас научить// National Geographic Россия. — 2007. — № 8. — С. 88—107.
Swarm Intelligence: From Natural to Artificial Systems by Eric Bonabeau, Marco Dorigo and Guy Theraulaz. (1999) ISBN 0-19-513159-2, complete bibliography
Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds by Mitchel Resnick. ISBN 0-262-18162-2
Swarm Intelligence by James Kennedy and Russell C. Eberhart. ISBN 1-55860-595-9
Swarm Intelligence (Journal) Chief Editor: Marco Dorigo. Springer New York. ISSN 1935-3812 (Print) 1935-3820 (Online) [1]
Eva Horn, Lucas Marco Gisi (Ed.): Schwärme — Kollektive ohne Zentrum. Eine Wissensgeschichte zwischen Leben und Information, Bielefeld: transcript 2009. ISBN 978-3-8376-1133-5
↑Beni, G., Wang, J. Swarm Intelligence in Cellular Robotic Systems, Proceed. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26-30 (1989)
↑В том числе в главе «Гипотеза Лауды» присутствует фраза «рой преобразуется в такой вот „тучемозг“» (rój układa się w ten jakiś „chmuromózg”).
↑Parsopoulos, KE; Vrahatis, M. N. Recent Approaches to Global Optimization Problems Through Particle Swarm Optimization (англ.) // Natural Computing (journal) : journal. — 2002. — Vol. 1, no. 2—3. — P. 235—306. — doi:10.1023/A:1016568309421.