Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июля 2022 года; проверки требуют 5 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июля 2022 года; проверки требуют 5 правок.
Октаэдр
Перейти к материалам ОГЭ/ЕГЭ
РУВИКИ для ОГЭ/ЕГЭ
Переходите на портал РУВИКИ, где собраны материалы для подготовки к ОГЭ и ЕГЭ.
Октаэдр имеет четыре специальные ортогональных проекции, центрированные ребром, вершиной, гранью и нормалью к грани. Второй и третий случай соответствуют плоскостям Коксетера B2 и A2.
Октаэдр можно представить, как сферическую мозаику и спроецировать на плоскость с помощью стереографической проекции. Эта проекция конформна, сохраняет углы, но не длины и площадь. Отрезки на сфере отображаются в дуги окружностей на плоскости.
Октаэдр с длиной ребра может быть помещён в начало координат, так что его вершины будут лежать на осях координат. Декартовы координаты вершин тогда будут
(±1, 0, 0);
(0, ±1, 0);
(0, 0, ±1).
В x-y-zпрямоугольной системе координат октаэдр с центром в точке (a, b, c) и радиусом r — это множество всех точек (x, y, z), таких, что
Площадь полной поверхности правильного октаэдра с длиной ребра a равна
Объём октаэдра (V) вычисляется по формуле:
Таким образом, объём октаэдра в четыре раза больше объёма тетраэдра с той же длиной ребра, в то время как площадь поверхности вдвое больше (поскольку поверхность состоит из 8 треугольников, а у тетраэдра — из четырёх).
Если октаэдр растянуть, чтобы выполнялось равенство:
формулы для поверхности и объёма превращаются в:
Кроме того, тензор моментов инерции растянутого октаэдра будет равен:
Он сводится к уравнению для правильного октаэдра, когда:
Октаэдр представляет собой пересечение двух тетраэдров
Внутренняя (общая) часть конфигурации из двух двойственных тетраэдров является октаэдром, а сама эта конфигурация называется звёздчатым октаэдром (лат.: stella octangula). Конфигурация является единственной звёздчатой формой октаэдра. Соответственно, правильный октаэдр является результатом отсечения от правильного тетраэдра четырёх правильных тетраэдров с половиной длины ребра (то есть полного усечения тетраэдра). Вершины октаэдра лежат на серединах рёбер тетраэдра и октаэдр связан с тетраэдром тем же образом, как кубооктаэдр и икосододекаэдр связаны с остальными платоновыми телами. Можно разделить рёбра октаэдра в отношении золотого сечения для определения вершин икосаэдра. Для этого следует расположить вектора на рёбрах, так, чтобы все грани были окружены циклами. Затем делим каждое ребро в золотом отношении вдоль векторов. Полученные точки являются вершинами икосаэдра.
Октаэдр уникален среди платоновых тел в том, что только он имеет чётное число граней при каждой вершине. Кроме того, это единственный член этой группы, который имеет плоскости симметрии, не пересекающие ни одну грань.
Если использовать стандартную терминологию многогранников Джонсона, октаэдр можно назвать квадратной бипирамидой. Усечение двух противоположных вершин приводит к усечённой бипирамиде.
Октаэдр можно вписать в тетраэдр, притом четыре из восьми граней октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести ребер тетраэдра.
Октаэдр можно вписать в куб, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
В октаэдр можно вписать куб, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.
Следующие многогранники комбинаторно эквивалентны правильному октаэдру. Они все имеют шесть вершин, восемь треугольных граней и двенадцать рёбер, что соответствует один к одному параметрам правильного октаэдра.
Треугольные антипризмы — две грани представляют собой равносторонние треугольники, лежащие в параллельных плоскостях и имеющие общую ось симметрии. Остальные шесть треугольников равнобедренные.
Четырёхугольные бипирамиды, в которых по меньшей мере один экваториальный четырёхугольник лежит в плоскости. Правильный октаэдр является специальным случаем, когда все три четырёхугольника являются плоскими квадратами.
Многогранник Шёнхардта, невыпуклый многогранник, который нельзя разбить на тетраэдры без введения новых вершин.
В общем случае, октаэдром может называться любой многогранник с восемью гранями. Правильный октаэдр имеет 6 вершин и 12 рёбер, минимальное число для октаэдра. Неправильные восьмигранники могут иметь до 12 вершин и 18 рёбер[3][4].
Существует 257 топологически различных выпуклых восьмигранников, исключая зеркальные копии[3]. В частности, имеется 2, 11, 42, 74, 76, 38, 14 восьмигранников с числом вершин от 6 до 12 соответственно[5][6]. (Два многогранника «топологически различны», если они имеют внутренне различное расположение граней и вершин, так что нет возможности преобразовать одно тело в другое просто изменением длины рёбер или углов между рёбрами или гранями.)
Некоторые известные неправильные восьмигранники:
Шестиугольная призма: Две грани являются параллельными правильными шестиугольниками, шесть квадратов соединяют соответствующие пары сторон шестиугольников.
Семиугольная пирамида: Одна грань является семиугольником (обычно правильным), а оставшиеся семь граней являются треугольниками (обычно равнобедренными). Невозможно добиться, чтобы все треугольные грани были равносторонними.
Усечённый тетраэдр: Четыре грани тетраэдра усекаются до правильных шестиугольников и образуются три дополнительные равносторонние треугольные грани на месте отсечённых вершин.
Форму октаэдра имеют межатомные пустоты (поры) в плотноупакованных структурах чистых металлов (никеле, меди, магнии, титане, лантане и многих других) и ионных соединений (хлорид натрия, сфалерит, вюрцит и др.).
Если каждое ребро октаэдра заменить одноомнымрезистором, общее сопротивление между противоположными вершинами будет составлять 1/2 ома, а между смежными вершинами — 5/12 ома[7].
Шесть музыкальных нот можно расположить на вершинах октаэдра так, что каждое ребро представляет созвучную пару, а каждая грань — созвучную тройку.
Каркас из повторяющихся тетраэдров и октаэдров изобретён Фуллером в 1950-х и он известен как пространственная рама и считается прочнейшей структурой, сопротивляющейся напряжениям консольной балки.
Правильный октаэдр можно увеличить до тетраэдра добавлением четырёх тетраэдров на чередующиеся грани. Добавление тетраэдров ко всем восьми граням образует звёздчатый октаэдр.
Правильный октаэдр можно рассматривать как полностью усечённый тетраэдр и может быть назван тетратетраэдром. Это можно показать с помощью раскрашенной в два цвета модели. При этом раскрашивании октаэдр имеет тетраэдральную симметрию.
Сравнение последовательности усечения тетраэдра и его двойственной фигуры:
Вышеприведённые тела можно понимать как срезы, ортогональные к длинной диагонали тессеракта. Если расположить эту диагональ вертикально с высотой 1, то первые пять сечений сверху будут на высотах r, 3/8, 1/2, 5/8 и s, где r — любое число в интервале (0,1/4], а s — любое число в интервале [3/4,1).
Октаэдр в качестве тетратетраэдра существует в последовательности симметрий квазиправильных многогранников и мозаик с конфигурацией вершин (3.n)2, проходя от мозаик на сфере к евклидовой плоскости, а затем в гиперболическую плоскость. В орбифолдной нотации симметрии *n32 все эти мозаики являются построениями Витхоффа внутри фундаментальной области симметрии с генерирующими точками на прямом угле области[8][9].
Arthur S. Finbow, Bert L. Hartnell, Richard J. Nowakowski, Michael D. Plummer. On well-covered triangulations. III // Discrete Applied Mathematics. — 2010. — Т. 158, вып. 8. — doi:10.1016/j.dam.2009.08.002.
Douglas J. Klein. Resistance-Distance Sum Rules // Croatica Chemica Acta. — 2002. — Т. 75, вып. 2. Архивировано 10 июня 2007 года.