Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 февраля 2023 года; проверки требуют 3 правки.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 февраля 2023 года; проверки требуют 3 правки.
Лантан
У этого термина существуют и другие значения, см. Лантан (значения).
Лантан как химический элемент не удавалось открыть на протяжении 36 лет. В 1803 г. 24-летний шведский химик Йёнс Якоб Берцелиус исследовал минерал, известный теперь под названием церит. В этом минерале была обнаружена иттриевая земля и ещё одна редкая земля, очень похожая на иттриевую. Её назвали цериевой. В 1826 г. Карл Мосандер исследовал цериевую землю и заключил, что она неоднородна, что в ней, помимо церия, содержится ещё один новый элемент. Доказать сложность цериевой земли Мосандеру удалось лишь в 1839 г. Он сумел выделить новый элемент, когда в его распоряжении оказалось большее количество церита.
Новый элемент, обнаруженный в церите и мозандерите, по предложению Берцелиуса назвали лантаном. Оно было дано в честь истории его открытия и происходит от др.-греч.λανθάνω — «скрываюсь», «таюсь».
Лантан вместе с церием и неодимом относится к наиболее распространенным редкоземельным элементам. Содержание лантана в земной коре порядка 2,9·10−3% по массе, в морской воде — около 2,9·10−6мг/л[2][4]. Основные промышленные минералы лантана — монацит, бастнезит, апатит и лопарит. В состав этих минералов также входят другие редкоземельные элементы[2].
Лантан — мягкий пластичныйблестящий серебристо-белый металл, в чистом состоянии — ковкий и тягучий. Слабо парамагнитен. Кристаллическая структура плотноупакованная типа плотнейшей гексагональной упаковки[5].
Существует в трёх кристаллических модификациях: α-La с гексагональной решёткой (а=0,3772 нм, с=1,2144 нм, z=4, пространственная группа Р63/ттс)[2], β-La с кубической решёткой типа меди (а=0,5296 нм, z=4, пространственная группа Fm3m), γ-La с кубической объёмноцентрированной решёткой типа α-Fe (а=0,426 нм, z=2, пространственная группа Im3m, устойчив до 920 °C) температуры переходов α↔β 277 °C и β↔γ 861 °C[2]. DH° полиморфных переходов: α:β — 0,36 кДж/моль, β:γ — 3,12 кДж/моль[2]. При переходе из одной модификации в другую меняется плотность лантана: α-La имеет плотность 6,162-6,18 г/см3[5], β-La — 6,19 г/см3, γ-La — 5,97 г/см3[2].
По своим химическим свойствам лантан больше всего похож на 14 следующих за ним элементов, поэтому их называют лантаноидами. Металлический лантан обладает высокой химической активностью[2].
Во влажном воздухе быстро превращается в основный карбонат лантана:
Легко взаимодействует с минеральными кислотами с образованием ионов La3+ и водорода. Вполне возможно, что в водном растворе ион La3+ в значительной степени существует как комплексный ион [La(OH2)9]3+[6]:
Бензоилацетонат лантана — хелатное соединение лантана, формула La(C10H9O2)3. Образует жёлтые призматические кристаллы. Получается взаимодействием солей лантана со спиртовым раствором бензоилацетона.
Гидрид лантана(III) — бинарное соединение, формула LaH3. Представляет собой тёмно-синее кристаллическое вещество; реагирует с водой с образованием гидроксида лантана. Получается действием водорода на лантан при 210—290 °С.
Гидроксид лантана(III) — белое нерастворимое в воде вещество с формулой La(OH)3. Образуется при действии горячей воды на металлический лантан или на оксид. При температурах выше 300 °С — разлагается.
Иодид лантана(III) — бинарное соединение, формула LaI3. Образует кристаллы жёлто-зелёного цвета, хорошо растворимые в воде и органических растворителях. Получают нагреванием лантана и иода в инертной атмосфере.
Карбид лантана(III) — бинарное соединение лантана с углеродом, формула LaС2. Образует жёлтые кристаллы. Реагирует с водой с образованием гидроксида и с выделением этана и ацетилена.
Купферонат лантана — органическое вещество, хелат, формула [La{C6H5N(NO)O}3]. Образует жёлтые кристаллы. Получается реакцией хлорида лантана с раствором купферона в кислой среде.
Нитрат лантана(III) — бесцветное кристаллическое вещество с формулой La(NO3)3; хорошо растворяется в воде и органических растворителях. Получается растворением лантана, его оксида или гидроксида в азотной кислоте.
Оксалат лантана(III) — бесцветное вещество, формула La2(C2O4)3. Не растворяется в воде. Получается действием на растворимые соли лантана избытком щавелевой кислоты.
Оксид лантана(III) — белые кристаллы, формула La2O3. Не растворяется в воде, но медленно реагирует с ней. Получается сгоранием лантана на воздухе или разложением его солей при высоких температурах. Растворяется в кислотах с образованием солей La(III). На воздухе поглощает углекислый газ, постепенно превращаясь в основной карбонат лантана.
Оксифторид лантана(III) — бесцветные кристаллы кубической сингонии, формула LaOF. Получают взаимодействием фторида лантана с водяными парами при 800 °С или спеканием оксида лантана с фторидом лантана в вакууме.
Силицид лантана(III) — бинарное неорганическое соединение, формула LaSi2. Образует серые кристаллы.
Сульфат лантана(III) — бесцветные кристаллы, растворимые в воде, формула La2(SO4)3. Получается растворением металлического лантана, его оксида или гидроксида в серной кислоте. Разлагается при нагревании.
Сульфиды лантана — бинарные неорганические соединения лантана и серы. Сульфид лантана(III) имеет формулу La2S3; образует жёлто-красные кристаллы, нерастворимые в воде. Получается действием паров серы на лантан при 600—800 °С. Моносульфид лантана LaS — образует золотистые кристаллы кубической сингонии. Дисульфид лантана LaS2 — коричневые кристаллы.
Фосфид лантана(III) — бинарное неорганическое соединение, чёрные кристаллы с формулой LaP. Получается реакцией лантана и фосфора при 400—500 °С.
Фторид лантана(III) — бесцветное вещество с формулой LaF3. Не растворяется в воде. Получают взаимодействием лантана с плавиковой кислотой либо прямым сгоранием лантана во фторе.
Хлорид лантана(III) — бесцветное вещество с формулой LaCl3, хорошо растворимое в воде. Получается реакцией лантана с хлором или взаимодействием его с соляной кислотой.
Гадолинит — чёрный (чёрно-бурый) минерал с жирным стекловатым блеском, формула (Ce, La, Nd, Y)2FeBe2Si2O10. Твёрдость по шкале Мооса — 6,5-7[8]. Удельный вес — 4-4,3[9]. Состав непостоянен.
Монацит — минерал класса фосфатов, формула (Ce, La, Nd, Th)[PO4]. Может иметь жёлтую, красновато-бурую, гиацинтово-красную, оливиново-зеленую окраску; цвет черты — белый (зеленовато-белый). Твёрдость по Моосу — 5—5,5; удельный вес — 4,9—5,2[10]. Из-за высокого содержания урана и тория — радиоактивен.
Ортит — бурый или чёрный минерал, класса силикатов. Химическая формула — (Ca, Ce, La, Y)2(Al, Fe)3(SiO4)3(OH)[11]. Твёрдость по Моосу — 5,5-6[12]. Удельный вес составляет 3,3—3,8[13].
Получение лантана связано с разделением исходного сырья на фракции. Лантан концентрируется вместе с церием, празеодимом и неодимом. Сначала из смеси отделяют церий, затем оставшиеся элементы разделяют экстракцией.
Чистый лантан практически не используется по причине своей высокой стоимости; вместо него применяется мишметалл: сплав с содержанием лантана 20—45 %[20][21]. Мишметалл является компонентом жаропрочных и коррозионностойких сплавов[17].
Для производства типичного гибридного автомобиля Toyota Prius требуется 10—15 кг лантана, где он входит в состав аккумулятора[22][23].
Карбонат лантана используется как лекарство, имеющее собственное название Fosrenol[24], применяющееся при гиперфосфатемии для поглощения избытка фосфатов[24].
Лантан имеет свойство поглощать водород. Один объём этого вещества способен поглотить до 400 объёмов водорода в процессе обратимой адсорбции. Это свойство применяется для создания емких аккумуляторов водорода (металлогидридное хранение водорода) и в системах сохранения энергии, так как при растворении водорода в лантане выделяется теплота[21][25].
Соли лантана и других редкоземельных элементов применяются в угольных дуговых лампах для увеличения яркости дуги[26]. Угольные дуговые лампы были популярны в кинопроекторах. На производство последних приходится около 25 % соединений лантана, которые изначально предполагались для дуговых ламп[21][27].
Жидким лантаном извлекают плутоний из расплавленного урана[28].
Небольшая добавка лантана к стали увеличивает её пластичность и деформируемость. Добавка лантана к молибдену уменьшает его твёрдость и чувствительность к перепадам температур[21].
Фторид лантана — важный компонент люминофоров. В смеси с фторидом европия он используется в кристаллической мембране ионоселективных электродов[29]. Он также входит в состав стекла ZBLAN. Оно обладает улучшенным коэффициентом пропускания в инфракрасном диапазоне и поэтому применяется в волоконной оптике[30].
Оксид лантана(III) — компонент специальных стёкол, высокотемпературной керамики, применяется также для производства других соединений лантана[21][31].
Бентонитовая глина (т. н. Phoslock), в которой ионы натрия и кальция заменяются на ионы лантана, используется для очистки сточных вод от фосфатов[36].
Небольшое количество соединений лантана связывает фосфаты в воде, в результате чего останавливается рост водорослей, которым необходимы соединения фосфора. Это свойство может применяться для очистки воды в бассейнах[37].
Некоторые соединения лантана (и других редкоземельных элементов), например, хлориды и оксиды являются компонентами различных катализаторов, применяемых в частности, для крекинга нефти[38].
В 1930-х годах советский учёный А. А. Дробков исследовал влияние редкоземельных металлов на культурные растения. Он проводил опыты с горохом, репой и другими растениями, вводя в грунт редкоземельные элементы (РЗЭ) вместе с бором, марганцем или без них. Результаты опытов показывали, что редкоземельные элементы, в том числе лантан, улучшают рост растений[28][42][43]. Однако использование микроудобрений на основе лантана и других РЗЭ приводит к противоположным результатам для разных видов и даже сортов одного вида культурных растений[44]. В Китае, являющемся ведущим мировым производителем РЗЭ, такие микроудобрения массово применяются в сельском хозяйстве[44][45].
Ионы лантана способны увеличивать амплитуду ГАМК-активированных сигналов на пирамидальных нейронах гена CA1[en], отмеченных в гиппокампе головного мозга[46]. Получение этих данных позволило сравнить чувствительность рецепторов ГАМКA пирамидальных нейронов с аналогичными рецепторами других клеток по восприимчивости к ГАМК и ионам лантана[46].
В природе лантан встречается в виде смеси двух изотопов: стабильного 139La и радиоактивного138La (период полураспада 1,02⋅1011 лет). Доля более распространённого изотопа 139La в природной смеси составляет 99,911 %[17]. Искусственно получены 39 неустойчивых изотопов с массовыми числами 117—155 и 12 ядерных изомеров лантана[47][48]. Наиболее долгоживущим из них является лантан-137 с периодом полураспада около 60 тыс. лет. Остальные изотопы имеют периоды полураспада от нескольких миллисекунд до нескольких часов.
Лантан относится к умеренно-токсичным веществам. Металлическая пыль лантана, а также мелкие частицы его соединений могут раздражать верхние дыхательные пути при попадании их внутрь, а также вызвать пневмокониоз[49][50].
↑ 12345678Химическая энциклопедия: в 5 тт / Редкол.:Кнунянц И. Л. (гл. ред.). — Москва: Советская энциклопедия, 1990. — Т. 2. — С. 577. — 671 с. — 100 000 экз.
↑Lighting (неопр.) (недоступная ссылка — история). 11th edition of Encyclop?dia Britannica (1911). Дата обращения: 6 июня 2009. Архивировано 5 января 2013 года.
↑Jason D. Sommerville and Lyon B. King. [http://www.me.mtu.edu/researchAreas/isp/Papers/AIAA-2007-5174-907.pdf Effect of Cathode Position on Hall-Effect Thruster Performance
and Cathode Coupling Voltage] (англ.) // 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 8–11 July 2007, Cincinnati, OH : journal. Архивировано 4 марта 2016 года.
↑ 1234[www.xumuk.ru/encyklopedia/2271.html Статья в Большой Химической Энциклопедии]
↑Hendrick, James B.Rare Earth Elements and Yttrium // Mineral Facts and Problems (неопр.). — Bureau of Mines, 1985. — Т. Bulletin 675. — С. 655. Архивировано 4 марта 2016 года.
↑E. V. D. van Loef, P. Dorenbos, C. W. E. van Eijk, K. W. Kraemer and H. U. Guedel Appl. Phys. Lett. 79 2001 1573
↑Knoll, Glenn F., Radiation Detection and Measurement 3rd ed. (Wiley, New York, 2000).
↑Рипан Р., Четяну И. Неорганическая химия. Химия металлов. — М.: Мир, 1972. — Т. 2. — 871 с.
↑Chau Y.P., Lu K.S. Investigation of the blood-ganglion barrier properties in rat sympathetic ganglia by using lanthanum ion and horseradish peroxidase as tracers (англ.) // Acta Anatomica (Basel) : journal. — 1995. — Vol. 153, no. 2. — P. 135—144. — ISSN0001-5180. — doi:10.1159/000313647. — PMID 8560966.
↑Hagheseresht et al. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters (англ.) // Applied Clay Science : journal. — 2009. — Vol. 46, no. 4. — P. 369—375.
↑Phosphate in Swimming Pool Water — The Root of Algae Problems
↑Larry Jeffus.Types of Tungsten // Welding : principles and applications (неопр.). — Clifton Park, N.Y.: Thomson/Delmar Learning, 2003. — С. 350. — ISBN 978-1-4018-1046-7.
↑Дробков А. А. Влияние редкоземельных элементов на рост растений. «Доклады АН СССР», 1935, 17(5), 261—263.
↑Дробков А. А. Микроэлементы и естественные радиоактивные элементы в жизни растений и животных / Отв. ред. Н. Г. Жежель. — М. : Изд-во АН СССР, 1958. — 208 с.
↑ 12Комаров С. М. Редкая соль земли. Химия и жизнь, № 5, 2013, с. 20—22.
↑Zhengyi Hu et al. Physiological and Biochemical Effects of Rare Earth Elements on Plants and Their Agricultural Significance: A Review. Journal оf Plant Nutrition, 2004, 27(1), p. 183—220.
↑ 12Boldyreva, A. A. Lanthanum Potentiates GABA-Activated Currents in Rat Pyramidal Neurons of CA1 Hippocampal Field (англ.) // Bulletin of Experimental Biology and Medicine : journal. — 2005. — Vol. 140, no. 4. — P. 403—405. — doi:10.1007/s10517-005-0503-z. — PMID 16671565.
↑Waring, PM; Watling, R.J. Rare earth deposits in a deceased movie projectionist. A new case of rare earth pneumoconiosis (англ.) // Medical Journal of Australia : journal. — 1990. — Vol. 153, no. 11—12. — P. 726—730. — PMID 2247001.