Имеется два тела, одно выпуклое и одно невыпуклое, оба из которых называются правильными икосаэдрами. Оба имеют 30 рёбер и 20 граней в виде правильных треугольников, которые сходятся по 5 в каждой из его 12 вершин. Оба имеют икосаэдральную симметрию. Термин «правильный икосаэдр» обычно относится к выпуклому виду, а невыпуклая форма называется большим икосаэдром.
Под выпуклым правильным икосаэдром обычно понимается правильный икосаэдр, один из пяти правильных многогранников, и он представлен символом Шлефли {3, 5}. Многогранник имеет 20 треугольных граней по 5 граней в каждой вершине.
Большой икосаэдр является одним из четырёх звёздчатых тел Кеплера — Пуансо. Его Символ Шлефли равен . Подобно выпуклому виду он имеет также 20 граней в виде правильных треугольников, но его вершинной фигурой служит пентаграмма, а не пятиугольник, что приводит к геометрически пересекающимся граням. Пересечения треугольников не представляют новых рёбер.
Образование звёздчатой формы — это процесс расширения граней или рёбер многогранника, пока они не соприкоснутся с образованием нового многогранника. Это осуществляется симметрично так, что результирующее тело сохраняет все симметрии родительского тела.
В книге «Пятьдесят девять икосаэдров» (The Fifty-Nine Icosahedra) Коксетера с соавторами перечислено 58 таких звёздчатых форм правильного икосаэдра.
Из них многие имеют отдельную грань в каждой из 20 плоскостей, а потому являются также икосаэдрами. Большой икосаэдр среди них.
Другие звёздчатые формы имеют более одной грани на каждой плоскости или формируются как соединение более простых многогранников. Они не являются, строго говоря, икосаэдрами, хотя и упоминаются часто как таковые.
Правильный икосаэдр топологически идентичен кубооктаэдру с 6 квадратными гранями, разбитыми по диагоналям.
Правильный икосаэдр может быть искривлён или размечен так, что он будет обладать более низкой пироэдральной симметрией[2] и он называется плосконосым октаэдром, плосконосым тетратетраэдом, плосконосым тетраэдром и псевдоикосаэдром. Его можно рассматривать как альтернированныйусечённый октаэдр. Если все треугольники правильные, симметрии можно различить путём раскраски 8 и 12 наборов треугольников различным образом.
Построение из вершин усечённого октаэдра, показаны внутренние прямоугольники.
Координаты 12 вершин могут быть заданы векторами, определёнными всеми положительными циклическими перестановками и изменениям знака координат вида (2, 1, 0). Эти координаты представляют усечённый октаэдр с альтернированным удалением вершин.
Это построение называется плосконосым тетраэдром, если образовано из вектора (ϕ, 1, 0), где ϕ является золотым сечением[2].
В икосаэдре Йессена, который иногда называют ортогональным икосаэдром Йессена, 12 равнобедренных граней расположены иначе, так что образуют невыпуклое тело. Он имеет прямыедвугранные углы.
Он равносоставлен с кубом, что значит, что его можно разрезать на более мелкие многогранники, из которых можно составить полный куб.
Daniel Jones. English Pronouncing Dictionary / Peter Roach, James Hartmann, Jane Setter. — Cambridge: Cambridge University Press, 2003. — ISBN 3-12-539683-2.