Марс

Материал из РУВИКИ — свободной энциклопедии
Марс Mars symbol (bold).svg
Планета
Изображение Марса на основе 102 снимков, полученных АМС «Викинг-1» 22 февраля 1980 года
Изображение Марса на основе 102 снимков, полученных АМС «Викинг-1» 22 февраля 1980 года
Другие названия Красная планета
Орбитальные характеристики
Перигелий 2,06655⋅108 км[1]
1,381 а.e.[2]
Афелий 2,49232⋅108 км[1]
1,666 а.e.[2]
Большая полуось (a) 2,2794382⋅108 км[1]
1,523662 а.e.[2]
1,524 земной[2]
Эксцентриситет орбиты (e) 0,0933941[1][2]
Сидерический период обращения (продолжительность года)
686,98 земных суток[1]
1,8808476 земного года[2]
Синодический период обращения 779,94 земных суток[1]
Орбитальная скорость (v) 24,13 км/с (средн.)[1]
24,077 км/с[2]
Наклонение (i)

1,85061° (относительно плоскости эклиптики)[1]

5,65° (относительно солнечного экватора)
Долгота восходящего узла (Ω) 49,57854°[1]
Аргумент перицентра (ω) 286,46230°
Чей спутник Солнца
Спутники 2
Физические характеристики
Полярное сжатие 0,00589 (1,76 земного)
Экваториальный радиус 3396,2 ± 0,1 км[3][4]
0,532 земного
Полярный радиус 3376,2 ± 0,1 км[3][4]
0,531 земного
Средний радиус 3389,5 ± 0,2 км[1][2][3]
0,532 земного
Площадь поверхности (S) 1,4437⋅108 км²[2]
0,283 земной
Объём (V) 1,6318⋅1011 км³[2][1]
0,151 земного
Масса (m) 6,4171⋅1023 кг[5]
0,107 земной
Средняя плотность (ρ) 3,933 г/см³[2][1]
0,714 земной
Ускорение свободного падения на экваторе (g) 3,711 м/с²
0,378 g[2]
Первая космическая скорость (v1) 3,55 км/с
0,45 земной
Вторая космическая скорость (v2) 5,03 км/с
0,45 земной[2][1]
Экваториальная скорость вращения 868,22 км/ч
Период вращения (T) 24 часа 37 минут 22,663 секунды[2] (24,6229 ч) — сидерический период вращения,
24 часа 39 минут 35,244 секунды (24,6597 ч) — длительность средних солнечных суток[6]
Наклон оси 25,1919°[6]
Прямое восхождение северного полюса (α) 317,681°[1]
Склонение северного полюса (δ) 52,887°[1]
Альбедо 0,250 (Бонд)[1]
0,150 (геом. альбедо)
0,170[1]
Видимая звёздная величина −2,94
Температура
На поверхности от −153 °C до +35 °C[7]
 
мин. сред. макс.
по всей планете
186 К;
−87 °C[2]
210 K
(−63 °C)[1]
268 К;
−5 °C[2]
Атмосфера[1]
Атмосферное давление 0,4—0,87 кПа
(4⋅10−3—8,7⋅10−3 атм)
Состав:
Логотип РУВИКИ.Медиа Медиафайлы на РУВИКИ.Медиа
Логотип РУВИКИ.Данные Информация на РУВИКИ.Данные ?

Марс — четвёртая по удалённости от Солнца и седьмая по размеру планета Солнечной системы; масса планеты составляет 10,7 % массы Земли[8]. Названа в честь Марса — древнеримского бога войны, соответствующего древнегреческому Аресу[9].

Марс называют «красной планетой» из-за красноватого оттенка поверхности, придаваемого ей минералом маггемитом — γ-оксидом железа(III)[10].

У Марса есть два естественных спутника — Фобос и Деймос (в переводе с древнегреческого — «страх» и «ужас», имена двух сыновей Ареса, сопровождавших его в бою), которые относительно малы (Фобос — 26,8×22,4×18,4 км[11], Деймос — 15×12,2×10,4 км[12]) и имеют неправильную форму[8].

Основные сведения[править | править код]

Изображение Марса на основе снимков АМС «Розетта», сделанное 24 февраля 2007 года с высоты 240 000 км

Марс — четвёртая по удалённости от Солнца (после Меркурия, Венеры и Земли) и седьмая по размеру (превосходит по массе и диаметру только Меркурий) планета Солнечной системы[13]. Масса Марса составляет 0,107 массы Земли, объём — 0,151 объёма Земли, а средний линейный диаметр — 0,53 диаметра Земли[8].

Рельеф Марса обладает многими уникальными чертами. Марсианский потухший вулкан Олимп — самая высокая известная гора на планетах Солнечной системы[14] (вторая по высоте гора в Солнечной системе — на астероиде Веста[15]), а долины Маринер — самый крупный известный каньон на планетах (самый большой каньон в Солнечной системе обнаружен на спутнике Плутона — Хароне[16]). Помимо этого, южное и северное полушария планеты радикально отличаются по рельефу; существует гипотеза, что Великая Северная равнина, занимающая 40 % поверхности планеты, является импактным кратером. В этом случае она оказывается самым крупным известным ударным кратером в Солнечной системе[17][18][19].

Марс имеет период вращения и смену времён года, аналогичные земным, но его климат значительно холоднее и суше земного[8].

Вплоть до полёта к Марсу автоматической межпланетной станции «Маринер-4» в 1965 году многие исследователи полагали, что на его поверхности есть вода в жидком состоянии. Это мнение было основано на наблюдениях за периодическими изменениями в светлых и тёмных участках, особенно в полярных широтах, которые были похожи на континенты и моря. Тёмные длинные линии на поверхности Марса интерпретировались некоторыми наблюдателями как ирригационные каналы для жидкой воды. Позднее было доказано, что большинство этих тёмных линий являются всего лишь оптической иллюзией[20].

Великие противостояния Марса (минимальное расстояние до Земли) за 1830—2050 годы
Дата Расст.,
а.e.
Расст.,
млн км
19 сентября 1830 0,388 58,04
18 августа 1845 0,373 55,80
17 июля 1860 0,393 58,79
5 сентября 1877 0,377 56,40
4 августа 1892 0,378 56,55
24 сентября 1909 0,392 58,64
23 августа 1924 0,373 55,80
23 июля 1939 0,390 58,34
10 сентября 1956 0,379 56,70
10 августа 1971 0,378 56,55
22 сентября 1988 0,394 58,94
28 августа 2003 0,373 55,80
27 июля 2018 0,386 57,74
15 сентября 2035 0,382 57,15
14 августа 2050 0,374 55,95

На самом деле из-за низкого давления вода (без примесей, понижающих точку замерзания) не может существовать в жидком состоянии на большей части (около 70 %) поверхности Марса[21]. Вода в состоянии льда была обнаружена в марсианском грунте космическим аппаратом НАСА «Феникс»[22][23]. В то же время, собранные марсоходами «Спирит» и «Opportunity» геологические данные позволяют предположить, что в далёком прошлом вода покрывала значительную часть поверхности Марса. Наблюдения в течение последнего десятилетия позволили обнаружить в некоторых местах на поверхности Марса слабую гейзерную активность[24]. По наблюдениям с космического аппарата «Mars Global Surveyor», некоторые части южной полярной шапки Марса постепенно отступают[25].

На 2023 год орбитальная исследовательская группировка на орбите Марса насчитывает восемь функционирующих космических аппаратов: «Марс Одиссей», «Марс-экспресс», «Mars Reconnaissance Orbiter», MAVEN, «Mars Orbiter Mission», «ExoMars Trace Gas Orbiter», «Аль-Амаль» и орбитальный аппарат китайской миссии «Тяньвэнь-1». Это больше, чем около любой другой планеты, не считая Землю. Поверхность же Марса исследует три марсохода — «Кьюриосити», «Персеверанс» и «Чжужун». Кроме того, на поверхности функционирует посадочный модуль миссии «InSight», а также находятся несколько неактивных посадочных модулей и марсоходов, завершивших исследования (см. ниже[⇨])[26].

Марс хорошо виден с Земли невооружённым глазом. Его видимая звёздная величина достигает −2,91m (при максимальном сближении с Землёй). Марс уступает по яркости лишь Юпитеру (во время великого противостояния Марса он может превзойти Юпитер), Венере, Луне и Солнцу. Противостояние Марса можно наблюдать каждые два года. Последний раз Марс был в противостоянии 8 декабря 2022 года, а следующее противостояние Марса произойдёт 16 января 2025 года. Последнее же великое противостояние Марса произошло 27 июля 2018 года. Тогда он находился на расстоянии 0,386 а.е. от Земли. Как правило, во время великого противостояния (то есть когда противостояние Марса с Землёй происходит близко к прохождению Марсом перигелия своей орбиты) оранжевый Марс становится ярчайшим объектом ночного неба после Луны (не считая Венеру, которая и тогда ярче него, но видна только утром или вечером), но это происходит лишь один раз в 15—17 лет в течение одной-двух недель[27].

Орбитальные характеристики[править | править код]

Минимальное расстояние от Марса до Земли составляет 55,76 млн км (когда Земля находится точно между Солнцем и Марсом), максимальное — 401 млн км (когда Солнце находится точно между Землёй и Марсом)[28].

Расстояние между Землёй и Марсом (млн км) в 2012—2024 годах. Треугольниками отмечены запуски космических аппаратов к Марсу

Среднее расстояние от Марса до Солнца составляет 228 млн км (1,52 а.e.), период обращения вокруг Солнца равен 687 земным суткам[1]. Орбита Марса имеет довольно заметный эксцентриситет (0,0934), поэтому расстояние до Солнца меняется от 206,6 до 249,2 млн км. Наклонение орбиты Марса к плоскости эклиптики равно 1,85°[1].

Марс ближе всего к Земле во время противостояния, когда планета находится на небе в направлении, противоположном Солнцу. Противостояния повторяются каждые 26 месяцев в разных точках орбиты Марса и Земли. Раз в 15—17 лет противостояния приходятся на то время, когда Марс находится вблизи своего перигелия; в этих традиционно называемых великими противостояниях расстояние до планеты минимально (менее 60 млн км), и Марс достигает наибольшего углового размера 25,1″ и яркости −2,88m[29].

Физические характеристики[править | править код]

Параметры планеты[править | править код]

По линейному размеру Марс практически ровно вдвое меньше Земли. Его средний экваториальный радиус оценивается как 3396,9 ± 0,4 км[30] или 3396,2 ± 0,1 км[1][3][31] (53,2 % земного). Средний полярный радиус Марса оценивается в 3374,9 км[30] или 3376,2 ± 0,1 км[1][3]; полярный радиус у северного полюса — 3376,2 км, у южного — 3382,6 км[32].

Таким образом, полярный радиус примерно на 2021 км меньше экваториального радиуса, а относительное полярное сжатие Марса f = (1 − Rп/Rэ) больше земного (соответственно 1/170 и 1/298), хотя период вращения у Земли несколько меньший, чем у Марса; это позволило в прошлом выдвинуть предположение об изменении скорости вращения Марса со временем[33][34].

Сравнение размеров Земли (средний радиус 6371,11 км) и Марса (средний радиус 3389,5 км)

Площадь поверхности Марса равна 144 млн км²[30] (28,3 % площади поверхности Земли) и приблизительно равна площади суши на Земле[35]. Масса планеты — 6,417⋅1023—6,418⋅1023 кг[32], более точные значения: 6,4171⋅1023 кг[1][5] или 6,4169 ± 0,0006 ⋅1023 кг. Масса Марса составляет около 10,7 % массы Земли[1]. Средняя плотность Марса — 3930—3933 кг/м³[34][1], более точное значение: 3933,5 ± 0,4 кг/м³[30] или 3934,0 ± 0,8 кг/м³ (0,713 земной плотности)[1][31].

Ускорение свободного падения на экваторе равно 3,711 м/с² (0,378 земного), что практически столько же, как у планеты Меркурий, который почти вдвое меньше Марса, но обладает массивным ядром и большей плотностью; первая космическая скорость составляет 3,6 км/с, вторая — 5,027 км/с[30][34].

Сила тяжести[править | править код]

Сила тяжести у поверхности Марса составляет 39,4 % от земной (в 2,5 раза слабее). Поскольку неизвестно, является ли такая сила тяжести достаточной, чтобы избежать длительных проблем со здоровьем, для долговременного пребывания человека на Марсе рассматриваются варианты создания искусственной силы тяжести с помощью утяжеляющих костюмов или центрифуг, обеспечивающих схожую с земной нагрузку на скелет[36].

Марсианские сутки[править | править код]

Период вращения планеты близок к земному — 24 часа 37 минут 22,7 секунды (относительно звёзд), длина средних марсианских солнечных суток составляет 24 часа 39 минут 35,24409 секунды, что всего на 2,7 % длиннее земных суток. Для удобства марсианские сутки именуют «солами». Марсианский год равен 668,59 сола, что составляет 686,98 земных суток[37][38][39].

Времена года на Марсе[править | править код]

Марс вращается вокруг своей оси, наклонённой относительно перпендикуляра к плоскости орбиты под углом 25,19°. Наклон оси вращения Марса схож с земным и обеспечивает смену времён года. При этом эксцентриситет орбиты приводит к большим различиям в их продолжительности — так, северная весна и лето, вместе взятые, длятся 371 сол, то есть заметно больше половины марсианского года. В то же время они приходятся на участок орбиты Марса, удалённый от Солнца. Поэтому на Марсе северное лето долгое и прохладное, а южное — короткое и относительно тёплое[1][40].

Атмосфера и климат[править | править код]

Атмосфера Марса, снимок получен искусственным спутником «Викинг» в 1976 году. Слева виден «кратер-смайлик» Галле

Температура на планете колеблется от −153 °C на полюсах зимой и до +20 °C[41][42] на экваторе летом (максимальная температура атмосферы, зафиксированная марсоходом «Спирит», составила +35 °C[7]), средняя температура — около 210 К (−63 °C)[2]. В средних широтах температура колеблется от −50 °C зимней ночью до 0 °C летним днём, среднегодовая температура — −50 °C[41].

Атмосфера Марса, состоящая в основном из углекислого газа, очень разрежена. Давление у поверхности Марса в 160 раз меньше земного — 6,1 мбар на среднем уровне поверхности. Из-за большого перепада высот на Марсе давление у поверхности сильно изменяется. Примерная толщина атмосферы — 110 км[41].

По данным НАСА (2004), атмосфера Марса состоит на 95,32 % из углекислого газа; также в ней содержится 2,7 % азота, 1,6 % аргона, 0,145 % кислорода, 210 ppm водяного пара, 0,08 % угарного газа, оксид азота (NO) — 100 ppm, неон (Ne) — 2,5 ppm, полутяжёлая вода водород-дейтерий-кислород (HDO) 0,85 ppm, криптон (Kr) 0,3 ppm, ксенон (Xe) — 0,08 ppm (состав приведён в объёмных долях)[1].

По данным спускаемого аппарата «Викинг» (1976), в марсианской атмосфере было определено около 1—2% аргона, 2—3% азота, а 95% — углекислый газ[43]. Согласно данным АМС «Марс-2» и «Марс-3», нижняя граница ионосферы находится на высоте 80 км, максимум электронной концентрации 1,7⋅105 электронов/см³ расположен на высоте 138 км, другие два максимума находятся на высотах 85 и 107 км[44].

Радиопросвечивание атмосферы на радиоволнах 8 и 32 см, проведённое АМС «Марс-4» 10 февраля 1974 года, показало наличие ночной ионосферы Марса с главным максимумом ионизации на высоте 110 км и концентрацией электронов 4,6⋅103 электронов/см³, а также вторичными максимумами на высоте 65 и 185 км[44].

Разреженность марсианской атмосферы и отсутствие магнитосферы являются причиной того, что уровень ионизирующей радиации на поверхности Марса существенно выше, чем на поверхности Земли. Мощность эквивалентной дозы на поверхности Марса составляет в среднем 0,7 мЗв/сутки (изменяясь в зависимости от солнечной активности и атмосферного давления в пределах от 0,35 до 1,15 мЗв/сутки) и обусловлена главным образом космическим излучением; для сравнения, в среднем на Земле эффективная доза облучения от естественных источников, накапливаемая за год, равна 2,4 мЗв, в том числе от космических лучей 0,4 мЗв. Таким образом, за один-два дня космонавт на поверхности Марса получит такую же эквивалентную дозу облучения, какую на поверхности Земли он получил бы за год[45][46].

Атмосферное давление[править | править код]

По данным НАСА на 2004 год, давление атмосферы на среднем радиусе составляет в среднем 636 Па (6,36 мбар), меняясь в зависимости от сезона от 400 до 870 Па. Плотность атмосферы у поверхности — около 0,020 кг/м³, общая масса атмосферы Марса — около 2,5⋅1016 кг (для сравнения: масса атмосферы Земли составляет 5,2⋅1018 кг)[1].

Изменение атмосферного давления на Марсе в зависимости от времени суток, зафиксированное посадочным модулем «Mars Pathfinder» в 1997 году

В отличие от Земли, масса марсианской атмосферы сильно изменяется в течение года в связи с таянием и намерзанием полярных шапок, содержащих углекислый газ. Зимой 20—30 % всей атмосферы намораживается на полярной шапке, состоящей из углекислоты[47]. Сезонные перепады давления, по разным источникам, составляют следующие значения:

  • По данным НАСА (2004): от 4,0 до 8,7 мбар на среднем радиусе[1];
  • По данным Encarta (2000): от 6 до 10 мбар[48];
  • По данным Zubrin и Wagner (1996): от 7 до 10 мбар[48];
  • По данным посадочного аппарата «Викинг-1»: от 6,9 до 9 мбар[1];
  • По данным посадочного аппарата «Mars Pathfinder»: от 6,7 мбар[47].
Ударная впадина Эллада — самое глубокое место Марса, где можно зафиксировать самое высокое атмосферное давление
Вулкан Олимп — самое высокое место Марса, там можно зафиксировать самое низкое атмосферное давление

Область Эллада настолько глубока, что атмосферное давление в ней достигает примерно 12,4 мбар[21], что выше тройной точки воды (около 6,1 мбар)[49], это значит, что вода теоретически может существовать там в жидком состоянии. Однако при таком давлении, диапазон температур нахождения воды в жидком состоянии очень узок, она замерзает при +0 °C и закипает при +10 °C. Помимо Эллады, есть ещё четыре района Марса, где атмосферное давление поднимается выше тройной точки воды[21].

На вершине высочайшей горы Марса, 27-километрового вулкана Олимп, атмосферное давление может составлять от 0,5 до 1 мбар, что почти не отличается от технического вакуума[49].

История[править | править код]

Попытки определить давление атмосферы Марса методами фотографической фотометрии, то есть по распределению яркости вдоль диаметра диска в разных диапазонах световых волн, проводились начиная с 1930-х годов. Французские учёные Бернар Лио и Одуэн Дольфюс производили с этой целью наблюдения поляризации рассеянного атмосферой Марса света. Сводку оптических наблюдений опубликовал американский астроном Жерар Анри де Вокулёр в 1951 году, и по ним получалось давление 85 мбар, завышенное почти в 15 раз, поскольку не было отдельно учтено рассеяние света пылью, взвешенной в атмосфере Марса. Вклад пыли был приписан газовой атмосфере[50].

До высадки на поверхность Марса посадочных модулей давление атмосферы Марса было измерено за счёт ослабления радиосигналов с АМС «Маринер-4», «Маринер-6», «Маринер-7» и «Маринер-9» при их захождении за марсианский диск и выходе из-за марсианского диска — 6,5 ± 2,0 мбар на среднем уровне поверхности, что в 160 раз меньше земного; такой же результат показали спектральные наблюдения АМС «Марс-3». При этом в расположенных ниже среднего уровня областях (например, в марсианской Амазонии давление, согласно этим измерениям, достигает 12 мбар[8].

В месте посадки зонда АМС «Марс-6» в районе Эритрейского моря было зафиксировано давление у поверхности 6,1 мбар, что на тот момент считалось средним давлением на планете, и от этого уровня было условлено отсчитывать высо́ты и глуби́ны на Марсе. По данным этого аппарата, полученным во время спуска, тропопауза находится на высоте примерно 30 км, где плотность атмосферы составляет 5⋅10−7 г/см³ (как на Земле на высоте 57 км)[51].

Климат[править | править код]

Циклон возле северного полюса Марса, снимки с телескопа «Хаббл» (27 апреля 1999 года)

Климат, как и на Земле, носит сезонный характер. Угол наклона Марса к плоскости орбиты почти равен земному и составляет 25,1919°[6]; соответственно, на Марсе, так же, как и на Земле, происходит смена времён года. Особенностью марсианского климата также является то, что эксцентриситет орбиты Марса значительно больше земного, и на климат влияет расстояние до Солнца. Перигелий Марс проходит во время разгара зимы в северном полушарии и лета в южном, афелий — во время разгара зимы в южном полушарии и соответственно лета в северном. Вследствие этого климат северного и южного полушарий различается. Для северного полушария характерны более мягкая зима и прохладное лето; в южном полушарии зима более холодная, а лето более жаркое[52]. В холодное время года даже вне полярных шапок на поверхности может образовываться светлый иней. Аппарат «Феникс» зафиксировал снегопад, однако снежинки испарялись, не достигая поверхности[53].

По сведениям НАСА (2004 год), средняя температура составляет ~210 K (−63 °C). По данным посадочных аппаратов «Викинг», суточный температурный диапазон составляет от 184 K до 242 K (от −89 до −31 °C) («Викинг-1»), а скорость ветра 2—7 м/с (лето), 5—10 м/с (осень), 17—30 м/с (пылевой шторм)[1].

По данным посадочного зонда «Марс-6», средняя температура тропосферы Марса составляет 228 K, в тропосфере температура убывает в среднем на 2,5 градуса на километр, а находящаяся выше тропопаузы (30 км) стратосфера имеет почти постоянную температуру 144 K[51].

Исследователи из Центра имени Карла Сагана в 2007—2008 годах пришли к выводу, что в последние десятилетия на Марсе идёт процесс потепления. Специалисты НАСА подтвердили эту гипотезу на основе анализа изменений альбедо разных частей планеты. Другие специалисты считают, что такие выводы делать пока рано[54][55]. В мае 2016 года исследователи из Юго-Западного исследовательского института в Боулдере (Колорадо) опубликовали в журнале Science статью, в которой предъявили новые доказательства идущего потепления климата (на основе анализа данных Mars Reconnaissance Orbiter). По их мнению, этот процесс длительный и идёт, возможно, уже в течение 370 тысяч лет[56].

Существуют предположения, что в прошлом атмосфера могла быть более плотной, а климат — тёплым и влажным, и на поверхности Марса существовала жидкая вода и шли дожди[57][58]. Доказательством этой гипотезы является анализ метеорита ALH 84001, показавший, что около 4 миллиардов лет назад температура Марса составляла 18 ± 4 °C[59].

Главной особенностью общей циркуляции атмосферы Марса являются фазовые переходы углекислого газа в полярных шапках, приводящие к значительным меридиональным потокам. Численное моделирование общей циркуляции атмосферы Марса указывает на существенный годовой ход давления с двумя минимумами незадолго перед равноденствиями, что подтверждается и наблюдениями по программе «Викинг»[60]. Анализ данных о давлении выявил годовой и полугодовой циклы[61]. Как и на Земле, максимум полугодовых колебаний зональной скорости ветра совпадает с равноденствиями[62]. Численное моделирование выявляет также и существенный цикл индекса с периодом 4—6 суток в периоды солнцестояний. «Викингом» обнаружено подобие цикла индекса на Марсе с аналогичными колебаниями в атмосферах других планет[60].

Пылевые бури и пыльные вихри[править | править код]

Весеннее таяние полярных шапок приводит к резкому повышению давления атмосферы и перемещению больших масс газа в противоположное полушарие. Скорость дующих при этом ветров составляет 10—40 м/с, иногда достигает 100 м/с. Ветер поднимает с поверхности большое количество пыли, что приводит к пылевым бурям. Сильные пылевые бури практически полностью скрывают поверхность планеты. Пылевые бури оказывают заметное воздействие на распределение температуры в атмосфере Марса[63].

Фотографии Марса, на которых видна пыльная буря (июнь — сентябрь 2001)

22 сентября 1971 года в светлой области Noachis в южном полушарии началась большая пылевая буря. К 29 сентября она охватила двести градусов по долготе от Ausonia до Thaumasia, а 30 сентября закрыла южную полярную шапку. Буря продолжала бушевать вплоть до декабря 1971 года, когда на орбиту Марса прибыли советские станции «Марс-2» и «Марс-3». «Марсы» проводили съёмку поверхности, но пыль полностью скрывала рельеф — не видно было даже горы Олимп, возвышающейся на 27 км. В одном из сеансов съёмки была получена фотография полного диска Марса с чётко выраженным тонким слоем марсианских облаков над пылью. Во время этих исследований в декабре 1971 года пылевая буря подняла в атмосферу столько пыли, что планета выглядела мутным красноватым диском. Только примерно к 10 января 1972 года пылевая буря прекратилась, и Марс принял обычный вид[64].

Пыльные вихри, сфотографированные марсоходом «Спирит» 15 мая 2005 года. Цифры в левом нижнем углу отображают время в секундах с момента первого кадра

Начиная с 1970-х годов, в рамках программы «Викинг», а также марсоходом «Спирит» и другими аппаратами были зафиксированы многочисленные пыльные вихри. Это газовые завихрения, возникающие у поверхности планеты и поднимающие вверх большое количество песка и пыли. Вихри часто наблюдаются и на Земле (в англоязычных странах их называют «пылевыми дьяволами» — англ. dust devil), однако на Марсе они могут достигать гораздо больших размеров: в 10 раз выше и в 50 раз шире земных. В марте 2005 года такой вихрь очистил солнечные батареи у марсохода «Спирит»[65].

Поверхность[править | править код]

Две трети поверхности Марса занимают светлые области, получившие название материков, около трети — тёмные участки, называемые морями (см. Список деталей альбедо на Марсе). Моря сосредоточены главным образом в южном полушарии планеты, между 10 и 40° широты. В северном полушарии есть только два крупных моря — Ацидалийское и Большой Сирт[34].

Марсоход «Соджорнер» изучает спектрометром альфа-частиц камень «Йоги» в долине Арес
Иней на поверхности Марса на равнине Утопия. Снимок «Викинг-2»
Участок поверхности кратера Гусев. Снимок «Спирит»

Характер тёмных участков до сих пор остаётся предметом споров. Несмотря на то, что на Марсе бушуют пылевые бури, они сохраняются. В одно время это служило доводом в пользу предположения, что тёмные участки покрыты растительностью. Сейчас полагают, что это просто участки, с которых, в силу их рельефа, легко выдувается пыль. Крупномасштабные снимки показывают, что на самом деле тёмные участки состоят из групп тёмных полос и пятен, связанных с кратерами, холмами и другими препятствиями на пути ветров. Сезонные и долговременные изменения их размера и формы связаны, по-видимому, с изменением соотношения участков поверхности, покрытых светлым и тёмным веществом[34].

Нулевой меридиан Марса принят проходящим через кратер Эйри-0

Полушария Марса довольно сильно различаются по характеру поверхности. В южном полушарии поверхность находится на 1—2 км выше среднего уровня и густо усеяна кратерами. Эта часть Марса напоминает лунные материки. На севере большая часть поверхности находится ниже среднего уровня, здесь мало кратеров и основную часть занимают относительно гладкие равнины, вероятно, образовавшиеся в результате затопления лавой и эрозии. Такое различие полушарий остаётся предметом дискуссий. Граница между полушариями следует примерно по большому кругу, наклонённому на 30° к экватору. Граница широкая и неправильная, образует склон в направлении на север. Вдоль неё встречаются самые эродированные участки марсианской поверхности[34][35].

Выдвинуто две альтернативных гипотезы, объясняющих асимметрию полушарий. Согласно одной из них, на раннем геологическом этапе литосферные плиты «съехались» (возможно, случайно) в одно полушарие, подобно континенту Пангея на Земле, а затем «застыли» в этом положении. Другая гипотеза предполагает столкновение Марса с космическим телом размером с Плутон около 4 млрд лет назад. В этом случае Северный Полярный бассейн, занимающий 40 % поверхности планеты, является импактным кратером и оказывается самым крупным известным ударным кратером в Солнечной системе[66][18][19]. Его длина — 10,6 тыс. км, а ширина — 8,5 тыс. км, что примерно в четыре раза больше, чем крупнейший ударный кратер Эллада, до того также обнаруженный на Марсе, вблизи его южного полюса[67].

Большое количество кратеров в южном полушарии предполагает, что поверхность здесь древняя — 3—4 млрд лет. Выделяют несколько типов кратеров: большие кратеры с плоским дном, более мелкие и молодые чашеобразные кратеры, похожие на лунные, кратеры, окружённые валом, и возвышенные кратеры. Последние два типа уникальны для Марса — кратеры с валом образовались там, где по поверхности текли жидкие выбросы, а возвышенные кратеры образовались там, где покрывало выбросов кратера защитило поверхность от ветровой эрозии. Самой крупной деталью ударного происхождения является равнина Эллада (примерно 2100 км в поперечнике)[68].

В области хаотического ландшафта вблизи границы полушарий поверхность испытала разломы и сжатия больших участков, за которыми иногда следовала эрозия (вследствие оползней или катастрофического высвобождения подземных вод), а также затопление жидкой лавой. Хаотические ландшафты часто находятся у истока больших каналов, прорезанных водой. Наиболее приемлемой гипотезой их совместного образования является внезапное таяние подповерхностного льда. На карте Марса выделены 26 областей, имеющих хаотический рельеф (официальное название таких деталей рельефа в планетологии — хаосы). Крупнейший из хаосов на Марсе — хаос Авроры — имеет размеры более 700 км[69].

Изображение системы каньонов долины Маринер на Марсе, составленное из снимков, полученных в рамках программы «Викинг»

В северном полушарии, помимо обширных вулканических равнин, находятся две области крупных вулканов — Фарсида и Элизий. Фарсида — обширная вулканическая равнина протяжённостью 2000 км, достигающая высоты 10 км над средним уровнем. На ней находятся три крупных щитовых вулкана — гора Арсия, гора Павлина и гора Аскрийская. На краю Фарсиды находится высочайшая на Марсе и высочайшая известная в Солнечной системе гора Олимп, которая достигает 27 км высоты по отношению к его основанию и 25 км по отношению к среднему уровню поверхности Марса, и охватывает площадь 550 км диаметром, окружённую обрывами, местами достигающими 7 км высоты. Объём Олимпа в 10 раз превышает объём крупнейшего вулкана Земли Мауна-Кеа. Здесь же расположено несколько менее крупных вулканов. Элизий — возвышенность до шести километров над средним уровнем, с тремя вулканами — купол Гекаты, гора Элизий и купол Альбор[14][49].

По другим данным, высота Олимпа составляет 21 287 метров над нулевым уровнем и 18 километров над окружающей местностью, а диаметр основания — примерно 600 км. Основание охватывает площадь 282 600 км²[70]. Кальдера (углубление в центре вулкана) имеет ширину 70 км и глубину 3 км[71].

Возвышенность Фарсида также пересечена множеством тектонических разломов, часто очень сложных и протяжённых. Крупнейший из них — долины Маринер — тянется в широтном направлении почти на 4000 км (четверть окружности планеты), достигая ширины 600 и глубины 7—10 км[72]; по размерам этот разлом сравним с Восточноафриканским рифтом на Земле. На его крутых склонах происходят крупнейшие в Солнечной системе оползни. Долина Маринер являются самым большим известным каньоном в Солнечной системе. Каньон, который был открыт космическим аппаратом «Маринер-9» в 1971 году, мог бы занять всю территорию США, от океана до океана[73].

Панорама поверхности Марса в районе Husband Hill, снятая марсоходом «Спирит» 23—28 ноября 2005 года
Панорама поверхности Марса в районе Husband Hill, снятая марсоходом «Спирит» 23—28 ноября 2005 года
Панорама ударного кратера Виктория диаметром около 800 метров, снятая марсоходом «Оппортьюнити» 16 октября—6 ноября 2006 года
Панорама ударного кратера Виктория диаметром около 800 метров, снятая марсоходом «Оппортьюнити» 16 октября—6 ноября 2006 года
Панорама камней и песчаных дюн «Рокнест», лежащих рядом с марсоходом «Кьюриосити» 26 ноября 2012
Панорама камней и песчаных дюн «Рокнест», лежащих рядом с марсоходом «Кьюриосити» 26 ноября 2012
Панорама поверхности Марса в кратере Езеро, снятая марсоходом «Персеверанс» 8 июля 2021 года
Панорама поверхности Марса в кратере Езеро, снятая марсоходом «Персеверанс» 8 июля 2021 года


Лёд и полярные шапки[править | править код]

Северная полярная шапка в летний период, фото Марс Глобал Сервейор. Широкий разлом слева — каньон Северный
Южная полярная шапка в летний период, фото Марс Глобал Сервейор
Кратер Королёв, содержащий 2200 кубических километров льда

Внешний вид Марса сильно изменяется в зависимости от времени года. Прежде всего бросаются в глаза изменения полярных шапок. Они разрастаются и уменьшаются, создавая сезонные явления в атмосфере и на поверхности Марса. По мере того, как весной полярная шапка в одном из полушарий отступает, детали поверхности планеты начинают темнеть[34].

Полярные шапки Марса состоят из двух составляющих: постоянной и сезонной. Постоянная часть сложена водяным льдом с прослойками пыли, принесённой ветром, и замёрзшего углекислого газа[74][75]. Диаметр постоянной части северной полярной шапки составляет 1100 км, а южной — 400 км[76]. Зимой полярная область планеты покрывается сезонным слоем углекислого льда толщиной около метра[75]. В максимуме разрастания южная полярная шапка достигает широты 50° (на 15° дальше северной)[77]. Различия шапок связаны с эллиптичностью орбиты Марса: когда в южном полушарии лето, планета ближе к Солнцу, поэтому южное лето теплее и короче северного, а южная зима холоднее и дольше северной[78].

Полярные шапки Марса лежат на Северном и Южном плато. Северная полярная шапка возвышается над окрестностями примерно на 3 км, а южная — на 3,5 км. Обе шапки изрезаны долинами, расходящимися по спирали (в Южном полушарии — по часовой стрелке, в Северном — против). Эти долины могли быть прорезаны катабатическими ветрами[74]. Кроме того, в каждую шапку врезается по одному большому каньону: каньон Северный и каньон Южный[79].

Аппарат «Марс Одиссей» обнаружил на южной полярной шапке Марса действующие гейзеры. Как считают специалисты НАСА, струи углекислого газа с весенним потеплением вырываются вверх на большую высоту, унося с собой пыль и песок[80][81].

В 1784 году астроном Уильям Гершель обратил внимание на сезонные изменения размера полярных шапок, по аналогии с таянием и намерзанием льдов в земных полярных областях[82]. В 1860-х годах французский астроном Эммануэль Ляи наблюдал волну потемнения вокруг тающей весенней полярной шапки, что тогда было истолковано как растекание талых вод и развитие растительности. Спектрометрические измерения, которые были проведены в начале XX века в обсерватории Лоуэлла во Флагстаффе Весто Слайфером, однако не показали наличия линии хлорофилла — зелёного пигмента земных растений[83].

По фотографиям «Маринера-7» удалось определить, что сезонная часть полярных шапок имеет толщину в несколько метров, а измеренная температура 115 K (−158 °C) подтвердила возможность того, что она состоит из замёрзшей углекислоты — «сухого льда»[84].

Значительные объёмы льда (десятки тысяч км3) были обнаружены путём радиолокации и в средних широтах Марса (40-45°), на восточном краю равнины Эллада. Скрытый грунтом ледник толщиной в сотни метров занимает площадь в тысячи квадратных километров[85][86].

В 2018 году радар MARSIS, установленный на аппарате Марс-экспресс, показал наличие подлёдного озера на Марсе, расположенного на глубине 1,5 км подо льдом Южной полярной шапки, шириной около 20 км[87][88]. Однако повторный анализ радарных данных аппарата Mars Express и лабораторные эксперименты показали, что так называемые «озёра» могут быть гидратированными и холодными отложениями, включающими глину (смектиты), минералы, содержащие металлы, и солёный лёд[89].

Гидросфера Марса[править | править код]

Микрофотография конкреции гематита в марсианском грунте, снятая марсоходом «Оппортьюнити» 2 марта 2004 года (поле зрения 1,3 см), что свидетельствует о присутствии в геологическом прошлом воды в жидком состоянии[90]
Так называемая «чёрная дыра» (колодец) диаметром более 150 м на поверхности Марса. Видна часть боковой стенки. Склон горы Арсия (фото «Марсианского разведывательного спутника»)

На Марсе имеется множество геологических образований, напоминающих водную эрозию, в частности, высохшие русла рек. Согласно одной из гипотез, эти русла могли сформироваться в результате кратковременных катастрофических событий и не являются доказательством длительного существования речной системы. Однако последние данные свидетельствуют о том, что реки текли в течение геологически значимых промежутков времени. В частности, обнаружены инвертированные русла (то есть русла, приподнятые над окружающей местностью). На Земле подобные образования формируются благодаря длительному накоплению плотных донных отложений с последующим высыханием и выветриванием окружающих пород. Кроме того, есть свидетельства смещения русел в дельте реки при постепенном поднятии поверхности[91].

В юго-западном полушарии, в кратере Эберсвальде обнаружена дельта реки площадью около 115 км². Намывшая дельту река имела длину более 60 км[92][93].

Данные марсоходов НАСА «Спирит» и «Оппортьюнити» также свидетельствуют о наличии воды в прошлом (найдены минералы, которые могли образоваться только в результате длительного воздействия воды). Аппарат «Феникс» обнаружил залежи льда непосредственно в грунте. Кроме того, обнаружены тёмные полосы на склонах холмов, свидетельствующие о появлении жидкой солёной воды на поверхности в наше время. Они появляются вскоре после наступления летнего периода и исчезают к зиме, «обтекают» различные препятствия, сливаются и расходятся. «Сложно представить, что подобные структуры могли сформироваться не из потоков жидкости, а из чего-то иного», — заявил сотрудник НАСА Ричард Зурек[94]. Дальнейший спектральный анализ показал присутствие в указанных областях перхлоратов — солей, способных обеспечить существование жидкой воды в условиях марсианского давления[95].

28 сентября 2012 года на Марсе были обнаружены следы пересохшего водного потока. Об этом объявили специалисты НАСА после изучения фотографий, полученных с марсохода «Кьюриосити», на тот момент работавшего на планете лишь семь недель. Речь идёт о фотографиях камней, которые, по мнению учёных, явно подвергались воздействию воды[96].

На вулканической возвышенности Фарсида обнаружено несколько необычных глубоких колодцев. Судя по снимку аппарата «Марсианский разведывательный спутник», сделанному в 2007 году, один из них имеет диаметр 150 метров, а освещённая часть стенки уходит в глубину не менее чем на 178 метров. Высказана гипотеза о вулканическом происхождении этих образований[97].

На Марсе имеется необычный регион — Лабиринт Ночи, представляющий собой систему пересекающихся каньонов[98]. Их образование не было связано с водной эрозией, и вероятная причина появления — тектоническая активность[99][100]. Когда Марс находится вблизи перигелия, над лабиринтом Ночи и долинами Маринера появляются высокие (40—50 км) облака. Восточный ветер вытягивает их вдоль экватора и сносит к западу, где они постепенно размываются. Их длина достигает нескольких сотен (до тысячи) километров, а ширина — нескольких десятков километров. Состоят они, судя по условиям в этих слоях атмосферы, тоже из водяного льда. Они довольно густые и отбрасывают на поверхность хорошо заметные тени. Их появление объясняют тем, что неровности рельефа вносят возмущения в газовые потоки, направляя их вверх. Там они охлаждаются, а содержащийся в них водяной пар конденсируется[101].

Согласно анализу данных аппарата Mars Reconnaissance Orbiter, гидросфера Марса существовала около 2—2,5 миллиардов лет назад[102].

Китайскими учёными были получены доказательства, что вода на Марсе оставалась в жидком виде гораздо дольше, чем считалось ранее. Марсоход «Чжужун» обнаружил на равнине Утопия гидратированные отложения и минералы возрастом всего 700 млн лет, что свидетельствует о присутствии большого количества воды на Марсе в то время[103].

Грунт[править | править код]

Фотография марсианского грунта в месте посадки аппарата «Феникс»

Элементный состав поверхностного слоя грунта, определённый по данным посадочных аппаратов, неодинаков в разных местах. Основная составляющая почвы — кремнезём (20—25 %), содержащий примесь гидратов оксидов железа (до 15 %), придающих почве красноватый цвет. Имеются значительные примеси соединений серы, кальция, алюминия, магния, натрия (единицы процентов для каждого)[104][10].

Согласно данным зонда НАСА «Феникс» (посадка на Марс 25 мая 2008 года), соотношение pH и некоторые другие параметры марсианских почв близки к земным, и на них теоретически можно было бы выращивать растения[105][106]. «Фактически мы обнаружили, что почва на Марсе отвечает требованиям, а также содержит необходимые элементы для возникновения и поддержания жизни как в прошлом, так и в настоящем и будущем», сообщил ведущий исследователь-химик проекта Сэм Кунейвс[107]. Также, по его словам, данный щелочной тип грунта (pH = 7,7) многие могут встретить «на своём заднем дворе», и он вполне пригоден для выращивания спаржи[108].

Орбитальный зонд «Марс Одиссей» в 2002 году обнаружил (с помощью спектрометра, регистрирующего гамма-излучение), что под поверхностью красной планеты есть значительные залежи водяного льда[109]. Позже это предположение было подтверждено и другими аппаратами, но окончательно вопрос о наличии воды на Марсе был решён в 2008 году, когда зонд «Феникс», севший вблизи северного полюса планеты, получил воду из марсианского грунта[22][23].

Данные, полученные марсоходом «Кьюриосити» и обнародованные в сентябре 2013 года, показали, что содержание воды под поверхностью Марса гораздо выше, чем считалось ранее. В породе, из которой брал образцы марсоход, её содержание может достигать 2 % по весу[110].

Геология и внутреннее строение[править | править код]

В прошлом на Марсе, как и на Земле, происходило движение литосферных плит. Это подтверждается особенностями магнитного поля Марса, местами расположения некоторых вулканов, например, в провинции Фарсида, а также формой долин Маринер[111]. Современное положение дел, когда вулканы могут существовать гораздо более длительное время, чем на Земле, и достигать гигантских размеров, говорит о том, что сейчас данное движение скорее отсутствует. В пользу этого говорит тот факт, что щитовые вулканы растут в результате повторных извержений из одного и того же жерла в течение длительного времени. На Земле из-за движения литосферных плит вулканические точки постоянно меняли своё положение, что ограничивало рост щитовых вулканов и, возможно, не позволяло достичь им такой высоты, как на Марсе. С другой стороны, разница в максимальной высоте вулканов может объясняться тем, что из-за меньшей силы тяжести на Марсе возможно построение более высоких структур, которые не обрушились бы под собственным весом[112]. Возможно, на планете имеется слабая тектоническая активность, приводящая к образованию наблюдаемых с орбиты пологих каньонов[113][114]. По данным сейсмометра SEIS на Марсе имеется небольшая сейсмическая активность, самое сильное зафиксированное марсотрясение (событие S1222a) имело магнитуду 4,7[115], самое сильное сейсмическое событие, вызванное падением метеорита на поверхность Марса в горной местности Темпе-Терра, имело магнитуду 4,1 ± 0,2 и позволило определить структуру скоростей P-волн в нижней мантии[116].

Сравнение строения Марса и других планет земной группы

Современные модели внутреннего строения Марса предполагают, что он состоит из коры со средней толщиной 50 км (максимальная оценка — не более 125 км), силикатной мантии и ядра радиусом, по разным оценкам, от 1480[117] до 1800 км[118]. Плотность в центре планеты должна достигать 8,5 г/см³. Ядро частично жидкое и состоит в основном из железа с примесью 14—18 % (по массе) серы[118], причём содержание лёгких элементов вдвое выше, чем в ядре Земли. Согласно современным оценкам, формирование ядра совпало с периодом раннего вулканизма и продолжалось около миллиарда лет. Примерно то же время заняло частичное плавление мантийных силикатов[112]. Из-за меньшей силы тяжести на Марсе диапазон давлений в мантии Марса гораздо меньше, чем на Земле, а значит, в ней меньше фазовых переходов. Предполагается, что фазовый переход оливина в шпинелевую модификацию начинается на довольно больших глубинах — 800 км (400 км на Земле). Характер рельефа и другие признаки позволяют предположить наличие астеносферы, состоящей из зон частично расплавленного вещества[119]. Для некоторых районов Марса составлена подробная геологическая карта[120].

Согласно наблюдениям с орбиты и анализу коллекции марсианских метеоритов, поверхность Марса состоит главным образом из базальта. Есть некоторые основания предполагать, что на части марсианской поверхности материал является более кварцесодержащим, чем обычный базальт, и может быть подобен андезитным камням на Земле. Однако эти же наблюдения можно толковать в пользу наличия кварцевого стекла. Значительная часть более глубокого слоя состоит из зернистой пыли оксида железа[121].

Магнитное поле[править | править код]

У Марса было зафиксировано слабое магнитное поле. Согласно показаниям магнитометров станций «Марс-2» и «Марс-3», напряжённость магнитного поля на экваторе составляет около 60 гамм, на полюсе — 120 гамм, что в 500 раз слабее земного. По данным АМС «Марс-5», напряжённость магнитного поля на экваторе составляла 64 гаммы, а магнитный момент планетарного диполя — 2,4⋅1022 эрстед·см²[122].

Магнитное поле Марса

Магнитное поле Марса крайне неустойчиво, в различных точках планеты его напряжённость может отличаться от 1,5 до 2 раз, а магнитные полюса не совпадают с физическими. Это говорит о том, что железное ядро Марса находится в сравнительной неподвижности по отношению к его коре, то есть механизм планетарного динамо, ответственный за работу магнитного поля Земли, на Марсе не работает. Хотя на Марсе не имеется устойчивого всепланетного магнитного поля[123], наблюдения показали, что части планетной коры намагничены и что наблюдалась смена магнитных полюсов этих частей в прошлом. Намагниченность данных частей оказалась похожей на полосовые магнитные аномалии в мировом океане[124].

По одной теории, опубликованной в 1999 году и перепроверенной в 2005 году (с помощью беспилотной станции «Марс Глобал Сервейор»), эти полосы демонстрируют тектонику плит 4 миллиарда лет назад — до того, как гидромагнитное динамо планеты прекратило выполнять свою функцию, что послужило причиной резкого ослабления магнитного поля[111]. Причины такого резкого ослабления неясны. Существует предположение, что функционирование динамо 4 млрд лет назад объясняется наличием астероида, который вращался на расстоянии 50—75 тысяч километров вокруг Марса и вызывал нестабильность в его ядре. Затем астероид снизился до предела Роша и разрушился[125]. Тем не менее, это объяснение само содержит неясные моменты и оспаривается в научном сообществе[126].

Изображение Марса на основе снимков АМС «Мангальян», сделанное 10 октября 2014 года с высоты 76 000 км

Геологическая история[править | править код]

Согласно одной из гипотез, в далёком прошлом в результате столкновения с крупным небесным телом произошла остановка вращения ядра, а также потеря основного объёма атмосферы. Потеря лёгких атомов и молекул из атмосферы — следствие слабого притяжения Марса. Считается, что потеря магнитного поля произошла около 4 млрд лет назад. Вследствие слабости магнитного поля солнечный ветер практически беспрепятственно проникает в атмосферу Марса, и многие из фотохимических реакций под действием солнечной радиации, которые на Земле происходят в ионосфере и выше, на Марсе могут наблюдаться практически у самой его поверхности[127].

Геологическая история Марса включает три периода[128][129][130]:

  • Нойский (названа в честь земли Ноя): формирование наиболее старой сохранившейся до наших дней поверхности Марса, в частности, бассейна Эллада, плато Фарсида и долин Маринера. Продолжалась в период 4,1—3,8 млрд лет назад. В эту эпоху поверхность была изрубцована многочисленными ударными кратерами и подвергалась эрозии[131];
  • Гесперийский (в честь Гесперийского плато): от 3,7 млрд лет назад до 2,5—3 млрд лет назад. Эта эпоха отмечена интенсивным вулканизмом;
  • Амазонийский (названа в честь плато Амазония): 2,5—3 млрд лет назад до наших дней. Все районы, образовавшиеся в эту эпоху, имеют очень мало метеоритных кратеров, но в остальном они существенно различаются. Постепенно затухают вулканические и эрозионные процессы. В этот период сформирована гора Олимп[130].

Спутники[править | править код]

Марс имеет два естественных спутника: Фобос и Деймос. Оба они открыты американским астрономом Асафом Холлом в 1877 году. Они имеют неправильную форму и очень маленькие размеры. По одной из гипотез, они могут представлять собой захваченные гравитационным полем Марса астероиды наподобие (5261) Эврика из Троянской группы астероидов. Спутники названы в честь персонажей, сопровождающих бога Ареса (то есть Марса), — Фобоса и Деймоса, олицетворяющих страх и ужас, которые помогали богу войны в битвах[132].

Оба спутника вращаются вокруг своих осей с тем же периодом, что и вокруг Марса, поэтому всегда повёрнуты к планете одной и той же стороной (это вызвано эффектом приливного захвата и характерно для большинства спутников планет в Солнечной системе, в том числе для Луны). Приливное воздействие Марса постепенно замедляет движение Фобоса, и, в конце концов, приведёт к падению спутника на Марс (при сохранении текущей тенденции), или к его распаду. Деймос, напротив, удаляется от Марса[133][134].

Орбитальный период Фобоса меньше, чем период обращения Марса, поэтому для наблюдателя на поверхности планеты Фобос (в отличие от Деймоса и вообще от всех известных естественных спутников планет Солнечной системы, кроме Метиды и Адрастеи) восходит на западе и заходит на востоке[133].

Оба спутника имеют форму, приближающуюся к трёхосному эллипсоиду, Фобос (26,8×22,4×18,4 км) несколько крупнее Деймоса (15×12,2×11 км). Поверхность Деймоса выглядит гораздо более гладкой за счёт того, что большинство кратеров покрыты тонкозернистым веществом. На Фобосе, более близком к планете и более массивном, вещество, выброшенное при ударах метеоритов, либо наносило повторные удары по поверхности, либо падало на Марс, в то время как на Деймосе оно долгое время оставалось на орбите вокруг спутника, постепенно осаждаясь и скрывая неровности рельефа[11][134].

Жизнь[править | править код]

История вопроса[править | править код]

Популярная идея, что Марс населён разумными марсианами, широко распространилась в конце XIX века. С тех пор Марс изучался многими учёными. Наблюдения Скиапарелли так называемых каналов в сочетании с книгой Персиваля Лоуэлла по той же теме сделали популярной идею о планете, климат которой становился всё суше, холоднее, которая умирала и на которой существовала древняя цивилизация, выполняющая ирригационные работы[135].

Другие многочисленные наблюдения и объявления известных лиц породили вокруг этой темы так называемую «Марсианскую лихорадку» (англ. Mars Fever)[136]. В 1899 году во время изучения атмосферных радиопомех с использованием приёмников в Колорадской обсерватории изобретатель Никола Тесла наблюдал повторяющийся сигнал. Он высказал догадку, что это может быть радиосигнал с других планет, например Марса. В интервью 1901 года Тесла сказал, что ему пришла в голову мысль о том, что помехи могут быть вызваны искусственно. Хотя он не смог расшифровать их значение, для него было невозможным то, что они возникли совершенно случайно. По его мнению, это было приветствие одной планеты другой[137].

Гипотеза Теслы вызвала горячую поддержку известного британского учёного-физика Уильяма Томсона (лорда Кельвина), который, посетив США в 1902 году, сказал, что, по его мнению, Тесла поймал сигнал марсиан, посланный в США[138]. Однако ещё до отбытия из Америки Кельвин стал решительно отрицать это заявление: «На самом деле я сказал, что жители Марса, если они существуют, несомненно могут видеть Нью-Йорк, в частности, свет от электричества»[139].

Фактические данные[править | править код]

Гипотезы о существовании в прошлом жизни на Марсе выдвигаются давно. По результатам наблюдений с Земли и данным космического аппарата «Марс-экспресс» в атмосфере Марса обнаружен метан. Позднее, в 2014 году, марсоход НАСА «Кьюриосити» зафиксировал всплеск содержания метана в атмосфере Марса и обнаружил органические молекулы в образцах, извлечённых в ходе бурения скалы Камберленд[140].

Распределение метана в атмосфере Марса в летний период в северном полушарии

В условиях Марса этот газ довольно быстро разлагается, поэтому должен существовать постоянный источник его пополнения. Таким источником может быть либо геологическая активность (но действующие вулканы на Марсе не обнаружены), либо жизнедеятельность бактерий. В июле 2021 года учёные с помощью компьютерного моделирования выявили, что один из вероятных источников метана может находиться на дне северо-западного кратера[141]. В некоторых метеоритах марсианского происхождения обнаружены образования, по форме напоминающие клетки, хотя они и уступают мельчайшим земным организмам по размерам[140]. Одним из таких метеоритов является ALH 84001, найденный в Антарктиде в 1984 году[142].

Метеорит ALH84001 под микроскопом

Важные открытия сделаны марсоходом «Кьюриосити». В декабре 2012 года были получены данные о наличии на Марсе органических веществ, а также токсичных перхлоратов. Те же исследования показали наличие водяного пара в нагретых образцах грунта[143]. Примечательно, что «Кьюриосити» на Марсе приземлился на дно высохшего озера[144].

Анализ наблюдений говорит, что планета ранее имела значительно более благоприятные для жизни условия, нежели теперь. В ходе программы «Викинг», осуществлённой в середине 1970-х годов, была проведена серия экспериментов для обнаружения микроорганизмов в марсианской почве. Она дала положительные результаты: например, временное увеличение выделения CO2 при помещении частиц почвы в воду и питательную среду. Однако затем данное свидетельство жизни на Марсе было оспорено учёными команды «Викингов»[145]. Это привело к их продолжительным спорам с учёным НАСА Гильбертом Левиным, который утверждал, что «Викинг» обнаружил жизнь. После переоценки данных «Викинга» в свете современных научных знаний об экстремофилах было установлено, что проведённые эксперименты были недостаточно совершенны для обнаружения этих форм жизни. Более того, эти тесты могли убить организмы, даже если последние содержались в пробах[146]. Тесты, проведённые в рамках программы «Феникс», показали, что почва имеет очень щелочной pH и содержит магний, натрий, калий и хлориды[147]. Питательных веществ в почве достаточно для поддержания жизни, однако жизненные формы должны иметь защиту от интенсивного ультрафиолетового света[148].

На сегодняшний день условием для развития и поддержания жизни на планете считается наличие жидкой воды на её поверхности, а также нахождение орбиты планеты в так называемой зоне обитаемости, которая в Солнечной системе начинается за орбитой Венеры и заканчивается большой полуосью орбиты Марса[149]. Вблизи перигелия Марс находится внутри этой зоны, однако тонкая атмосфера с низким давлением препятствует появлению жидкой воды на длительный период. Недавние свидетельства говорят о том, что любая вода на поверхности Марса является слишком солёной и кислотной для поддержания постоянной земноподобной жизни[150].

Отсутствие магнитосферы и крайне разрежённая атмосфера Марса также являются проблемой для поддержания жизни. На поверхности планеты идёт очень слабое перемещение тепловых потоков, она плохо изолирована от бомбардировки частицами солнечного ветра; помимо этого, при нагревании вода мгновенно испаряется, минуя жидкое состояние из-за низкого давления. Кроме того, Марс также находится на пороге так называемой «геологической смерти». Окончание вулканической активности, по всей видимости, остановило круговорот минералов и химических элементов между поверхностью и внутренней частью планеты[151].

Терраформированный Марс в представлении художника

Колонизация Марса[править | править код]

Близость Марса и относительное его сходство с Землёй породили ряд фантастических проектов терраформирования и колонизации Марса землянами в будущем. «Кьюриосити» обнаружил сразу два источника органических молекул на поверхности Марса. Помимо кратковременного увеличения доли метана в атмосфере, аппарат зафиксировал наличие углеродных соединений в порошкообразном образце, оставшемся от бурения марсианской скалы. Первое открытие позволил сделать инструмент SAM на борту марсохода. За 20 месяцев он 12 раз измерил состав марсианской атмосферы. В двух случаях — в конце 2013 года и начале 2014-го — «Кьюриосити» удалось обнаружить десятикратное увеличение средней доли метана. Этот всплеск, по мнению членов научной команды марсохода, свидетельствует об обнаружении локального источника метана. Имеет ли он биологическое или же иное происхождение, специалисты утверждать затрудняются вследствие нехватки данных для полноценного анализа[141][140].

Астрономические наблюдения с поверхности Марса[править | править код]

После посадок автоматических аппаратов на поверхность Марса появилась возможность вести астрономические наблюдения непосредственно с поверхности планеты. Вследствие астрономического положения Марса в Солнечной системе, характеристик атмосферы, периода обращения Марса и его спутников картина ночного неба Марса (и астрономических явлений, наблюдаемых с планеты) отличается от земной и во многом представляется необычной и интересной[152].

Небесная сфера[править | править код]

Северный полюс на Марсе, вследствие наклона оси планеты, находится в созвездии Лебедя (экваториальные координаты: прямое восхождение 21ч 10м 42с, склонение +52° 53.0′) и не отмечен яркой звездой: ближайшая к полюсу — тусклая звезда шестой величины BD +52 2880 (другие её обозначения — HR 8106, HD 201834, SAO 33185). Южный полюс мира (координаты 9ч 10м 42с и −52° 53,0) находится в паре градусов от звезды Каппа Парусов (видимая звёздная величина 2,5) — её можно считать Южной Полярной звездой Марса[153].

Вид неба похож на наблюдаемый с Земли, с одним отличием: при наблюдении годичного движения Солнца по созвездиям Зодиака оно (как и планеты, включая Землю), выйдя из восточной части созвездия Рыб, будет проходить в течение 6 дней через северную часть созвездия Кита перед тем, как снова вступить в западную часть Рыб[154].

Во время восхода и захода Солнца марсианское небо в зените имеет красновато-розовый цвет, а в непосредственной близости к диску Солнца — от голубого до фиолетового, что совершенно противоположно картине земных зорь[152].

Закат на Марсе 19 мая 2005 года. Снимок марсохода «Спирит», который находился в кратере Гусев
Закат на Марсе 19 мая 2005 года. Снимок марсохода «Спирит», который находился в кратере Гусев

В полдень небо Марса жёлто-оранжевое. Причина таких отличий от цветовой гаммы земного неба — свойства тонкой, разреженной, содержащей взвешенную пыль атмосферы Марса. На Марсе рэлеевское рассеяние лучей (которое на Земле и является причиной голубого цвета неба) играет незначительную роль, эффект его слаб, но проявляется в виде голубого свечения при восходе и закате Солнца, когда свет проходит через атмосферу большее расстояние. Предположительно, жёлто-оранжевая окраска неба также вызывается присутствием 1 % магнетита в частицах пыли, постоянно взвешенной в марсианской атмосфере и поднимаемой сезонными пылевыми бурями. Сумерки начинаются задолго до восхода Солнца и длятся долго после его захода. Иногда цвет марсианского неба приобретает фиолетовый оттенок в результате рассеяния света на микрочастицах водяного льда в облаках (последнее — довольно редкое явление)[152].

Солнце и планеты[править | править код]

Угловой размер Солнца, наблюдаемый с Марса, меньше видимого с Земли и составляет 23 от последнего. Меркурий с Марса будет практически недоступен для наблюдений невооружённым глазом из-за чрезвычайной близости к Солнцу. Самой яркой планетой на небе Марса является Венера, на втором месте — Юпитер (его четыре крупнейших спутника часть времени можно наблюдать без телескопа), на третьем — Земля[155].

Земля по отношению к Марсу является внутренней планетой, так же, как Венера для Земли. Соответственно, с Марса Земля наблюдается как утренняя или вечерняя звезда, восходящая перед рассветом или видимая на вечернем небе после захода Солнца. Максимальная элонгация Земли на небе Марса составляет 38 градусов. Для невооружённого глаза Земля будет видна как очень яркая (максимальная видимая звёздная величина около −2,5m) зеленоватая звезда, рядом с которой будет легко различима желтоватая и более тусклая (около +0,9m) звёздочка Луны[156]. В телескоп оба объекта будут видны с одинаковыми фазами. Обращение Луны вокруг Земли будет наблюдаться с Марса следующим образом: на максимальном угловом удалении Луны от Земли невооружённый глаз легко разделит Луну и Землю: через неделю «звёздочки» Луны и Земли сольются в неразделимую глазом единую звезду, ещё через неделю Луна будет снова видна на максимальном расстоянии, но уже с другой стороны от Земли. Периодически наблюдатель на Марсе сможет видеть прохождение (транзит) Луны по диску Земли либо, наоборот, покрытие Луны диском Земли. Максимальное видимое удаление Луны от Земли (и их видимая яркость) при наблюдении с Марса будет значительно изменяться в зависимости от взаимного положения Земли и Марса, и, соответственно, расстояния между планетами. В эпохи противостояний оно составит около 17 минут дуги (около половины углового диаметра Солнца и Луны при наблюдении с Земли), на максимальном удалении Земли и Марса — 3,5 минуты дуги. Земля, как и другие планеты, будет наблюдаться в полосе созвездий Зодиака. Астроном на Марсе также сможет наблюдать прохождение Земли по диску Солнца; ближайшее такое явление произойдёт 10 ноября 2084 года[157].

История изучения[править | править код]

Исследование Марса классическими методами астрономии[править | править код]

Изображения Марса с разной степенью детализации в разные годы

Первые наблюдения Марса проводились до изобретения телескопа. Это были позиционные наблюдения с целью определения положений планеты по отношению к звёздам. Существование Марса как блуждающего объекта в ночном небе было письменно засвидетельствовано древнеегипетскими астрономами в 1534 году до н. э. Ими же было установлено ретроградное (попятное) движение планеты и рассчитана траектория движения вместе с точкой, где планета меняет своё движение относительно Земли с прямого на попятное[158].

В вавилонской планетарной теории были впервые получены временны́е измерения планетарного движения Марса и уточнено положение планеты на ночном небе. Пользуясь данными египтян и вавилонян, древнегреческие (эллинистические) философы и астрономы разработали подробную геоцентрическую модель для объяснения движения планет. Спустя несколько веков индийскими и персидскими астрономами был оценён размер Марса и расстояние до него от Земли. В XVI веке Николай Коперник предложил гелиоцентрическую модель для описания Солнечной системы с круговыми планетарными орбитами. Его результаты были пересмотрены Иоганном Кеплером, который ввёл более точную эллиптическую орбиту Марса, совпадающую с наблюдаемой[159][160].

Голландский астроном Христиан Гюйгенс первым составил карту поверхности Марса, отражающую множество деталей. 28 ноября 1659 года он сделал несколько рисунков Марса, на которых были отображены различные тёмные области, позже сопоставленные с плато Большой Сирт[161].

Предположительно, первые наблюдения, установившие существование у Марса ледяной шапки на южном полюсе, были сделаны итальянским астрономом Джованни Доменико Кассини в 1666 году. В том же году он при наблюдениях Марса делал зарисовки видимых деталей поверхности и выяснил, что через 36 или 37 дней положения деталей поверхности повторяются, а затем вычислил период вращения — 24 часа 40 минут (этот результат отличается от правильного значения менее чем на 3 минуты)[161].

В 1672 году Христиан Гюйгенс заметил нечёткую белую шапочку и на северном полюсе[162].

В 1888 году Джованни Скиапарелли дал первые имена отдельным деталям поверхности: моря Афродиты, Эритрейское, Адриатическое, Киммерийское; озёра Солнца, Лунное и Феникс[163].

Расцвет телескопических наблюдений Марса пришёлся на конец XIX — середину XX века. Во многом он обусловлен общественным интересом и известными научными спорами вокруг наблюдавшихся марсианских каналов. Среди астрономов докосмической эры, проводивших телескопические наблюдения Марса в этот период, наиболее известны Скиапарелли, Персиваль Ловелл, Слайфер, Антониади, Барнард, Жарри-Делож, Л. Эдди, Тихов, Вокулёр. Именно ими были заложены основы ареографии и составлены первые подробные карты поверхности Марса — хотя они и оказались практически полностью неверными после полётов к Марсу автоматических зондов[164].

Исследование Марса космическими аппаратами[править | править код]

Изучение с помощью телескопов на орбите вокруг Земли[править | править код]

Для систематического исследования Марса были использованы возможности космического телескопа «Хаббл» (КТХ или HST — Hubble Space Telescope), при этом были получены фотографии Марса с самым высоким разрешением из когда-либо сделанных на Земле[165]. КТХ может создать изображения полушарий, что позволяет промоделировать погодные системы. Наземные телескопы, оснащённые ПЗС, могут сделать фотоизображения Марса высокой чёткости, что позволяет в противостоянии регулярно проводить мониторинг планетной погоды[166][167].

Рентгеновское излучение с Марса, впервые обнаруженное астрономами в 2001 году с помощью космической рентгеновской обсерватории «Чандра», состоит из двух компонентов. Первая составляющая связана с рассеиванием в верхней атмосфере Марса рентгеновских лучей Солнца, в то время как вторая происходит от взаимодействия между ионами с обменом зарядами[168].

Исследование Марса межпланетными станциями[править | править код]

С 1960-х годов к Марсу для подробного изучения планеты с орбиты и фотографирования поверхности были направлены несколько автоматических межпланетных станций (АМС). Кроме того, продолжалось дистанционное зондирование Марса с Земли в большей части электромагнитного спектра с помощью наземных и орбитальных телескопов, например, в инфракрасном — для определения состава поверхности[169], в ультрафиолетовом и субмиллиметровом диапазонах — для исследования состава атмосферы[170][171], в радиодиапазоне — для измерения скорости ветра[172].

Советские исследования[править | править код]

Одна из первых цветных фотографий Марса, полученных с АМС «Марс-3»

Советские исследования Марса включали в себя программу «Марс», в рамках которой с 1962 по 1973 год были запущены автоматические межпланетные станции четырёх поколений для исследования планеты Марс и околопланетного пространства. Первые АМС («Марс-1», «Зонд-2») исследовали также и межпланетное пространство[173].

Космические аппараты четвёртого поколения (серия М-71 — «Марс-2», «Марс-3», запущены в 1971 году) состояли из орбитальной станции — искусственного спутника Марса и спускаемого аппарата с автоматической марсианской станцией, комплектовавшейся марсоходом «ПрОП-М». Космические аппараты серии М-73С «Марс-4» и «Марс-5» должны были выйти на орбиту вокруг Марса и обеспечивать связь с автоматическими марсианскими станциями, которые несли АМС серии М-73П «Марс-6» и «Марс-7»; эти четыре АМС были запущены в 1973 году[173].

Из-за неудач спускаемых аппаратов главная техническая задача всей программы «Марс» — проведение исследований на поверхности планеты с помощью автоматической марсианской станции — не была решена. Тем не менее многие научные задачи, такие как получение фотографий поверхности Марса и различные измерения атмосферы, магнитосферы, состава почвы, являлись передовыми для своего времени. В рамках программы была осуществлена первая мягкая посадка спускаемого аппарата на поверхность Марса («Марс-3», 2 декабря 1971 года) и первая попытка передачи изображения с поверхности[173].

СССР осуществил также программу «Фобос» — две автоматические межпланетные станции, предназначенные для исследования Марса и его спутника Фобоса. Первая АМС «Фобос-1» была запущена 7 июля, а вторая, «Фобос-2» — 12 июля 1988 года. Основная задача — доставка на поверхность Фобоса спускаемых аппаратов (ПрОП-Ф и ДАС) для изучения спутника Марса — осталась невыполненной. Однако несмотря на потерю связи с обоими аппаратами, исследования Марса, Фобоса и околомарсианского пространства, выполненные в течение 57 дней на этапе орбитального движения «Фобоса-2» вокруг Марса, позволили получить новые научные результаты о тепловых характеристиках Фобоса, плазменном окружении Марса, взаимодействии его с солнечным ветром[174].

Американские исследования[править | править код]

Фотография района Кидония, сделанная станцией «Викинг-1» в 1976 году

В 1964—1965 годах в США был осуществлён первый в истории удачный полёт к Марсу в рамках программы «Маринер». «Маринер-4» осуществил в 1965 году первое исследование с пролётной траектории и сделал первые снимки поверхности. «Маринер-6» и «Маринер-7» в 1969 году провели с пролётной траектории первое исследование состава атмосферы с применением спектроскопических методик и определение температуры поверхности по измерениям инфракрасного излучения. В 1971 году «Маринер-9» стал первым искусственным спутником Марса и осуществил первое картографирование поверхности[175].

Вторая марсианская программа США «Викинг» включала запуск в 1975 году двух идентичных космических аппаратов «Викинг-1» и «Викинг-2», которые провели исследования с околомарсианской орбиты и на поверхности Марса, в частности, поиск жизни в пробах грунта. Каждый «Викинг» состоял из орбитальной станции — искусственного спутника Марса и спускаемого аппарата с автоматической марсианской станцией. Автоматические марсианские станции «Викинг» являются первыми космическими аппаратами, которые успешно работали на поверхности Марса и передали большой объём научной информации в том числе снимки с места посадки. Жизнь обнаружить не удалось[176].

Марсианская программа США «Mars Pathfinder» включала в себя стационарную марсианскую станцию и марсоход «Соджорнер», они работали на поверхности Марса в долина Арес в 1996—1997 годах. Всего было передано 16,5 тыс. снимков камеры марсианской станции и 550 снимков камер марсохода, проведено 15 анализов пород. Научные результаты дали дополнительные подтверждения гипотезы о том, что когда-то Марс был более «влажным и тёплым»[177].

«Mars Global Surveyor» — орбитальный аппарат НАСА, осуществлял картографирование поверхности в 1999—2007 годах[178].

«Феникс» — посадочный аппарат НАСА, стал первым аппаратом, успешно совершившим посадку в полярном регионе Марса, работал в 2008 году[179].

В ходе выполнения программы «Mars Exploration Rover» на Марс были успешно доставлены два марсохода-близнеца:

Современные исследования[править | править код]

В данный момент на орбите Марса работают следующие АМС:

На поверхности Марса в данный момент работают следующие аппараты:

Места посадок автоматических станций на Марсе
[править | править код]

Вопрос о праве собственности на планету и её участки[править | править код]

В 1982 году участки на Марсе начал продавать планетарий в городе Боулдер. В 1988 году проживавший в городе Финикс (штат Аризона) гражданин США Ричард Гриффинг зарегистрировал в местной нотариальной палате право собственности на всю территорию планеты Марс и предложил желающим покупать у него права на владение отдельными участками местности[193][194].

Однако реальных прав собственности такие сделки не создают, поскольку права собственности на участки планет не признаются никаким государством и никаким государством не защищаются. Более того, «Договор о принципах деятельности государств по исследованию и использованию космического пространства», подписанный 133 странами, гласит, что космическое пространство, включая Луну и другие небесные тела, не подлежит национальному присвоению ни путём провозглашения на них суверенитета, ни путём использования или оккупации, ни любыми другими средствами, а государства несут ответственность за национальную деятельность в космическом пространстве, включая небесные тела, и в том случае, когда она осуществляется неправительственными юридическими лицами[195].

В культуре[править | править код]

Иллюстрация марсианского треножника из французского издания «Войны миров» 1906 года

К созданию фантастических произведений о Марсе писателей подталкивали начавшиеся в конце XIX века дискуссии учёных о возможности того, что на поверхности Марса существует не просто жизнь, а развитая цивилизация[196]. В это время был создан, например, знаменитый роман Герберта Уэллса «Война миров», в котором марсиане пытались покинуть свою умирающую планету для завоевания Земли. В 1938 году в США радиоверсия этого произведения была представлена в виде новостной радиопередачи, что послужило причиной массовой паники, когда многие слушатели по ошибке приняли этот «репортаж» за правду[197]. В 1966 году писатели Аркадий и Борис Стругацкие написали сатирическое «продолжение» данного произведения под названием «Второе нашествие марсиан»[198].

В 1917—1964 годах вышло одиннадцать книг о Барсуме — так называлась планета Марс в фантастическом мире, созданном Эдгаром Райсом Берроузом. В его произведениях планета была представлена как умирающая, жители которой находятся в непрерывной войне всех со всеми за скудные природные ресурсы[199]. В 1938 году Клайв Льюис написал роман «За пределы безмолвной планеты»[200].

В числе важных произведений о Марсе также стоит отметить вышедший в 1950 году роман Рэя Брэдбери «Марсианские хроники», состоящий из отдельных слабо связанных между собой новелл, а также ряд примыкающих к этому циклу рассказов; роман повествует об этапах освоения человеком Марса и контактах с гибнущей древней марсианской цивилизацией[201].

В вымышленной вселенной Warhammer 40,000 Марс является главной цитаделью Adeptus Mechanicus, первым из миров-кузниц. Фабрики Марса, покрывающие всю поверхность планеты, круглосуточно выпускают оружие и боевую технику для бушующей в Галактике войны[202].

Джонатан Свифт упомянул о спутниках Марса за 150 лет до того, как они были реально открыты, в 19-й части своего романа «Путешествия Гулливера»[203].

В творчестве Дэвида Боуи начала 1970-х периодически упоминается Марс. Так, группа, с которой он выступает в это время, называется Spiders From Mars, а в альбоме Hunky Dory появляется песня под названием «Life on Mars?». Текст немалого количества композиций содержит хотя бы само слово «Марс»[204].

В античной мифологии[править | править код]

«Марс и его дети», иллюстрация из средневековой германской книги, 1480 год

В Вавилонии эта планета ассоциировалась с богом подземного царства Нергалом[205][206]. Олмстед сообщает, что в древнем Вавилоне планету называли Салбатану[207].

Греки именовали Марс (звезду Марса) Πυρόεις (Пироис[208], Пироэйс[209], Пироент[210]; «огненный»[208], «пламенный»[211])[212].

Гигин (в переводе А. И. Рубана) называет его звездой Геркулеса[209].

В римской мифологии Марс первоначально был богом плодородия. Затем Марс был отождествлён с греческим Аресом и стал богом войны, а также стал олицетворять планету Марс[9].

В индуистской мифологии планета ассоциируется с богом Мангала, который родился от капель пота Шивы[213].


Литература[править | править код]

Примечания[править | править код]

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Mars Fact Sheet. NSSDCA. Дата обращения: 18 декабря 2023.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Mars: Facts & Figures. NASA Solar System Exploration. Дата обращения: 18 декабря 2023.
  3. 1 2 3 4 5 Seidelmann P. K., Archinal B. A., A'Hearn M. F., Conrad A. et al., 2007, с. 173.
  4. 1 2 Согласно наиболее приближённой к реальной поверхности планеты модели эллипсоида
  5. 1 2 Konopliv A. S., Asmar S. W., Folkner W. M., Karatekin Ö., 2011.
  6. 1 2 3 Allison M., McEwen M., 2000.
  7. 1 2 Extreme Planet Takes Its Toll. Mars NASA JPL. Дата обращения: 18 декабря 2023.
  8. 1 2 3 4 5 Марс. Большая советская энциклопедия. Дата обращения: 18 декабря 2023.
  9. 1 2 Hughes J., 1995, с. 215.
  10. 1 2 On Mars: Exploration of the Red Planet. 1958-1978. NASA Headquarters. Дата обращения: 19 декабря 2023. Архивировано 19 октября 2013 года.
  11. 1 2 Phobos: Facts & Figures. Solar System Exploration NASA. Дата обращения: 18 декабря 2023.
  12. Deimos: Overview. Solar System Exploration NASA. Дата обращения: 18 декабря 2023.
  13. См. сравнительную таблицу
  14. 1 2 Tallest mountain in the Solar System. Guinness World Records. Дата обращения: 18 декабря 2023.
  15. New View of Vesta Mountain from NASA's Dawn Mission. Dawn NASA JPL. Дата обращения: 18 декабря 2023.
  16. A ‘Super Grand Canyon’ on Pluto’s Moon Charon. NASA. Дата обращения: 18 декабря 2023.
  17. Marinova M. M., Aharonson O., Asphaug E., 2008, с. 1216.
  18. 1 2 Nimmo F., Hart S. D., Korycansky D. G., Agnor C. B., 2008.
  19. 1 2 Andrews-Hanna J. C., Zuber M. T., Banerdt W. B., 2008.
  20. The 'Canali' and the First Martians. NASA. Дата обращения: 18 декабря 2023.
  21. 1 2 3 Making a Splash on Mars. NASA. Дата обращения: 18 декабря 2023.
  22. 1 2 Smith P. H., Tamppari L. K., Arvidson R. E., Bass D. et al., 2009.
  23. 1 2 «Феникс» сумел получить воду из марсианского грунта. Lenta.ru. Дата обращения: 18 декабря 2023.
  24. NASA Images Suggest Water Still Flows in Brief Spurts on Mars. NASA. Дата обращения: 18 декабря 2023.
  25. Orbiter's Long Life Helps Scientists Track Changes on Mars. Mars Global Surveyor NASA JPL. Дата обращения: 18 декабря 2023.
  26. История исследований Марса с помощью космических аппаратов. РИА Новости. Дата обращения: 18 декабря 2023.
  27. The Planet Mars: A History of Observation and Discovery. University of Arizona. Дата обращения: 18 декабря 2023.
  28. Левин А., 2007.
  29. 28 августа 2003 - рекордное противостояние Марса. Российская Астрономическая Сеть. Дата обращения: 18 декабря 2023.
  30. 1 2 3 4 5 Lodders K., Fegley B. Jr., 1998.
  31. 1 2 Planetary Physical Parameters. NASA JPL. Дата обращения: 18 декабря 2023.
  32. 1 2 Mars. Britannica. Дата обращения: 18 декабря 2023.
  33. Давыдов В. Д., 1978.
  34. 1 2 3 4 5 6 7 Марс. Большая российская энциклопедия. Дата обращения: 18 декабря 2023. Архивировано 22 декабря 2022 года.
  35. 1 2 Марс. Российская Астрономическая Сеть. Дата обращения: 18 декабря 2023.
  36. Давайте подумаем 1 — Можно ли «победить» низкую гравитацию Марса? Habr. Дата обращения: 18 декабря 2023.
  37. Сол. Институт Космических Исследований. Дата обращения: 18 декабря 2023.
  38. Почему сутки на Марсе называются сол. Планета Марс. Дата обращения: 18 декабря 2023.
  39. Марсианские хроники. Вокруг Света. Дата обращения: 18 декабря 2023.
  40. Какая температура на Марсе? Gismeteo. Дата обращения: 18 декабря 2023.
  41. 1 2 3 Mars Facts. NASA Quest. Дата обращения: 18 декабря 2023.
  42. Аксенова М. Д., 2001.
  43. Бронштэн В. А., 1977, с. 39.
  44. 1 2 Бронштэн В. А., 1977, с. 90.
  45. Guo J., Zeitlin C., Wimmer-Schweingruber R. F., Rafkin S. et al., 2015.
  46. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly. UNSCEAR. Дата обращения: 18 декабря 2023. Архивировано 5 февраля 2009 года.
  47. 1 2 Mars Pathfinder Science Results. Mars NASA. Дата обращения: 18 декабря 2023.
  48. 1 2 Pressure on the Surface of Mars. The Physics Factbook. Дата обращения: 18 декабря 2023.
  49. 1 2 3 Cockell C., Blaustein A. R., 2001, с. 202.
  50. Бронштэн В. А., 1977, с. 32.
  51. 1 2 Бронштэн В. А., 1977, с. 88.
  52. Гарлик М., 2009.
  53. Whiteway J. A., Komguem L., Dickinson C., Cook C. et al., 2009.
  54. Будут ли цвести яблони на Марсе? Известия Науки. Дата обращения: 18 декабря 2023.
  55. A Gloomy Mars Warms Up. NASA. Дата обращения: 18 декабря 2023.
  56. Mars also undergoing climate change as ice age retreats, study shows. The Washington Times. Дата обращения: 18 декабря 2023.
  57. Barnhart C. J., Howard A. D., Moore J. M., 2009.
  58. Раскрыта тайна потери Марсом плотной атмосферы. Lenta.ru. Дата обращения: 18 декабря 2023.
  59. Wet and Mild: Caltech Researchers Take the Temperature of Mars's Past. Caltech. Дата обращения: 18 декабря 2023.
  60. 1 2 Pollack J. B., Leovy C. B., Greiman P. W., Mintz Y., 1981.
  61. Cazenave A., Balmino G., 1981.
  62. Krigel A. M., 1986.
  63. Planet Gobbling Dust Storms. NASA Science. Дата обращения: 18 декабря 2023.
  64. Марс -71 (Марс-2 и Марс-3). НПО им. С.А. Лавочкина. Дата обращения: 18 декабря 2023.
  65. Spirit Gets A Dust Devil Once-Over. Space.com. Дата обращения: 18 декабря 2023. Архивировано 24 декабря 2010 года.
  66. Marinova M. M., Aharonson O., Asphaug E., 2008.
  67. Impact may have transformed Mars. Science News. Дата обращения: 18 декабря 2023.
  68. Martian Landscapes: Linear Features, Volcanoes, Impact Craters, Channels; Exotic Terrains. NASA RST. Дата обращения: 18 декабря 2023.
  69. Chaoses on Mars. Gazetteer of Planetary Nomenclature. Дата обращения: 18 декабря 2023.
  70. Faure G., Mensing T. M., 2007, p. 218.
  71. Faure G., Mensing T. M., 2007, p. 219.
  72. Valles Marineris. NASA Education. Дата обращения: 18 декабря 2023.
  73. Valles Marineris. NASA PDS. Дата обращения: 18 декабря 2023.
  74. 1 2 Faure G., Mensing T. M., 2007, p. 239—241.
  75. 1 2 Polar caps of Mars. David Darling. Дата обращения: 18 декабря 2023.
  76. Barlow N., 2008, с. 154.
  77. Mahajan R. A., 2005, с. 4.
  78. Mahajan R. A., 2005.
  79. Barlow N., 2008.
  80. NASA Findings Suggest Jets Bursting From Martian Ice Cap. NASA JPL. Дата обращения: 18 декабря 2023.
  81. Annual punctuated co2 slab-ice and jets on Mars. Mars Polar Science 2000. Дата обращения: 18 декабря 2023. Архивировано 21 августа 2011 года.
  82. Бронштэн В. А., 1977, с. 19.
  83. Бронштэн В. А., 1977, с. 48.
  84. Бронштэн В. А., 1977, с. 67—68.
  85. Holt J. W., Safaeinili A., Plaut J. J., Head J. W. et al., 2008.
  86. У подножия марсианских гор найден слой вечной мерзлоты. TUT.BY. Дата обращения: 18 декабря 2023.
  87. Evidence detected of lake beneath the surface of Mars. CNN. Дата обращения: 18 декабря 2023.
  88. Девять значимых событий 2018 года в физике и астрономии. Наука и Жизнь. Дата обращения: 18 декабря 2023.
  89. Clays, Not Water, Are Likely Source of Mars 'Lakes'. NASA Mars. Дата обращения: 18 декабря 2023.
  90. Opportunity Rover Finds Strong Evidence Meridiani Planum Was Wet. Mars Exploration NASA JPL. Дата обращения: 18 декабря 2023.
  91. Марсианские хроники: ископаемая речная дельта. Троицкий вариант. Дата обращения: 18 декабря 2023.
  92. Mars Express сфотографировал дельту в кратере Эберсвальде. Lenta.ru. Дата обращения: 18 декабря 2023.
  93. Снимок кратеров Эберсвальде, Холден и русла реки. European Space Agency. Дата обращения: 18 декабря 2023.
  94. НАСА: на снимках с Марса видны очертания водных потоков. BBC Russian. Дата обращения: 18 декабря 2023.
  95. Лучшее 2015: На Марсе обнаружена жидкая соленая вода. N + 1. Дата обращения: 18 декабря 2023.
  96. «Кьюриосити» обнаружил на Марсе русло пересохшего ручья. Lenta.ru. Дата обращения: 18 декабря 2023.
  97. Long history of water and Mars. BBC. Дата обращения: 18 декабря 2023.
  98. Noctis Labyrinthus. Gazetteer of Planetary Nomenclature. Дата обращения: 18 декабря 2023. Архивировано 19 октября 2011 года.
  99. Bistacchi N., Massironi M., Baggio P., 2004.
  100. 41st Lunar and Planetary Science Conference. Lunar and Planetary Institute. Дата обращения: 18 декабря 2023.
  101. Clancy R. T., Wolff M. J., Cantor B. A., Malin M. C., Michaels T. I. et al., 2009.
  102. NASA’s MRO Finds Water Flowed on Mars Longer Than Previously Thought. NASA. Дата обращения: 18 декабря 2023.
  103. Liu Y., Wu X., Zhao Y.-Y. S., Pan L., 2022.
  104. Preliminary Mars Pathfinder APXS Results. NSSDCA. Дата обращения: 19 декабря 2023. Архивировано 20 января 2012 года.
  105. Boynton W. V., Ming D. W., Kounaves S. P., Young S. M. M. et al., 2009.
  106. Hecht M. H., Kounaves S. P., Quinn R. C., West S. J. et al., 2009.
  107. Почва на Марсе содержит необходимые для возникновения и поддержания жизни элементы - американские исследователи. АМИ-ТАСС. Дата обращения: 19 декабря 2023.
  108. Martian soil 'could support life'. BBC. Дата обращения: 19 декабря 2023.
  109. Bell J., 2002, с. 60.
  110. Ученые: На Марсе оказалось неожиданно много воды. Взгляд. Дата обращения: 19 декабря 2023.
  111. 1 2 New Map Provides More Evidence Mars Once Like Earth. NASA. Дата обращения: 19 декабря 2023.
  112. 1 2 Венера. Система образования Новосибирской области. Дата обращения: 19 декабря 2023.
  113. UCLA scientist discovers plate tectonics on Mars. UCLA Newsroom. Дата обращения: 19 декабря 2023.
  114. Yin A., 2012.
  115. Kawamura T., Clinton J. F., Zenhäusern G., Ceylan S. et al., 2022.
  116. Durán C., Khan A., Ceylan S., Charalambous C. et al., 2022.
  117. APS X-rays reveal secrets of Mars' core. Argonne national laboratory. Дата обращения: 19 декабря 2023.
  118. 1 2 Rivoldini A., Van Hoolst T., Verhoeven O., Mocquet A., Dehant V., 2011.
  119. Внутреннее строение. Космическая энциклопедия ASTROnote. Дата обращения: 19 декабря 2023.
  120. Geologic Map of MTM –40277, –45277, –40272, and –45272 Quadrangles, Eastern Hellas Planitia Region of Mars. USGS. Дата обращения: 19 декабря 2023.
  121. Christensen P. R., Bandfield J. L., Bell J. F. 3rd, Gorelick N. et al., 2003.
  122. Бронштэн В. А., 1977, с. 90—91.
  123. Magnetic fields and Mars. Mars Global Surveyor NASA. Дата обращения: 19 декабря 2023. Архивировано 21 августа 2011 года.
  124. MGS Press Release 99-56. Mars Global Surveyor NASA. Дата обращения: 19 декабря 2023.
  125. Arkani-Hamed J., 2009.
  126. Марс приобрёл и потерял магнитное поле из-за астероида. membrana. Дата обращения: 19 декабря 2023. Архивировано 21 августа 2011 года.
  127. Ретроградный астероид мог вызвать магнитное поле Марса. Весь Марс. Дата обращения: 19 декабря 2023.
  128. Tanaka K. L., 1986.
  129. Hartmann W. K., Neukum G., 2001.
  130. 1 2 Carr M. H., Head J. W. III, 2010.
  131. Владимир Иванович Вернадский: Учение о Биосфере и Астробиология. russianunesco.ru. Дата обращения: 19 декабря 2023.
  132. Ares Retinue. Theoi Greek Mythology. Дата обращения: 19 декабря 2023. Архивировано 16 августа 2011 года.
  133. 1 2 Phobos. Nine Planets. Дата обращения: 19 декабря 2023.
  134. 1 2 Deimos. Sea and Sky. Дата обращения: 19 декабря 2023.
  135. Percival Lowell had been inspired by the work of Giovanni Schiaparelli. University of Houston. Дата обращения: 19 декабря 2023.
  136. Mars Fever. The Pennsylvania State University. Дата обращения: 19 декабря 2023.
  137. Talking with the Planets (1901). United States Early Radio History. Дата обращения: 19 декабря 2023. Архивировано 1 сентября 2011 года.
  138. Cheney M., 1981, с. 162.
  139. The New York Times, 1902, с. 29.
  140. 1 2 3 На Марсе обнаружены признаки жизни. Lenta.ru. Дата обращения: 19 декабря 2023.
  141. 1 2 Luo Y., Mischna M., Lin J., Fasoli B. et al., 2021.
  142. Birthplace of famous Mars meteorite pinpointed. New Scientist. Дата обращения: 19 декабря 2023. Архивировано 6 июня 2012 года.
  143. NASA Mars Rover Fully Analyzes First Martian Soil Samples. Curiosity Rover NASA JPL. Дата обращения: 19 декабря 2023.
  144. Марс перепроверяют на наличие органики. Известия. Дата обращения: 19 декабря 2023.
  145. Missing Piece Inspires New Look at Mars Puzzle. NASA. Дата обращения: 19 декабря 2023.
  146. New Analysis of Viking Mission Results Indicates Presence of Life on Mars. Phys.org. Дата обращения: 19 декабря 2023. Архивировано 17 января 2012 года.
  147. Phoenix Returns Treasure Trove for Science. NASA. Дата обращения: 19 декабря 2023.
  148. NASA Field-Tests the First System Designed to Drill for Subsurface Martian Life. NASA. Дата обращения: 19 декабря 2023.
  149. Estimated Habitable Zone for the Solar System. Purdue University. Дата обращения: 19 декабря 2023. Архивировано 18 июня 2011 года.
  150. Early Mars 'too salty' for life. BBC. Дата обращения: 19 декабря 2023.
  151. Hannsson A., 1997.
  152. 1 2 3 The Martian Sky: Stargazing from the Red Planet. Starryskies. Дата обращения: 19 декабря 2023.
  153. Is there a North Star for Mars? EarthSky. Дата обращения: 19 декабря 2023.
  154. [https://planetariodevitoria.org/en/space/what-constellation-is-mars-in.html What constellation is Mars in? Источник: https://planetariodevitoria.org/espaco/em-qual-constelacao-fica-marte.html]. planetariodevitoria.org. Дата обращения: 19 декабря 2023.
  155. Perelman Y., 2000, с. 147.
  156. Earth, Moon, and Jupiter, as Seen From Mars. Malin Space Science Systems. Дата обращения: 19 декабря 2023. Архивировано 16 сентября 2011 года.
  157. Meeus J., Goffin E., 1983.
  158. Novakovic B., 2014.
  159. North J., 2008.
  160. Swerdlow N. M., 1998, с. 34—72.
  161. 1 2 Sheehan W., 1996, с. 20.
  162. Rabkin E. S., 2005, с. 60.
  163. Есть ли жизнь на Марсе? Новый Акрополь. Дата обращения: 19 декабря 2023.
  164. Представления о Марсе к середине ХХ века. Атомная и космическая отрасли России. Дата обращения: 19 декабря 2023.
  165. Hubble Captures Best View of Mars Ever Obtained From Earth. HubbleSite. Дата обращения: 19 декабря 2023.
  166. James P. B., Clancy T. R., Lee S. W., Martin L. J., Singer R. B., 1993, с. 1061.
  167. Cantor B. A., Wolff M. J., James P. B., Higgs E., 1997.
  168. Dennerl K., 2002.
  169. Blaney D. B., McCord T. B., 1988.
  170. Feldman P. D., Burgh E. B., Durrance S. T., Davidsen A. F., 2000.
  171. Gurwell M. A., Bergin E. A., Melnick G. J., Ashby M. L. N. et al., 2000.
  172. Lellouch E., Goldstein J. J., Bougher S. W., Paubert G., Rosenqvist J., 1991.
  173. 1 2 3 БСЭ 1975. Interplanetary probes of the Soviet Union. Дата обращения: 19 декабря 2023.
  174. Календарь космических дат. Роскосмос. Дата обращения: 19 декабря 2023.
  175. Mariner 4. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  176. Viking Mission to Mars. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  177. Mars Pathfinder. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  178. Mars Global Surveyor. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  179. Phoenix Mars Lander. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  180. Spirit. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  181. Opportunity. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  182. 2001 Mars Odyssey. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  183. Mars Express. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  184. Mars Reconnaissance Orbiter. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  185. Космический аппарат MAVEN вышел на орбиту Марса. Вести. Дата обращения: 19 декабря 2023.
  186. Индийский зонд вышел на орбиту Марса. Lenta.ru. Дата обращения: 19 декабря 2023.
  187. ExoMars 2016. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  188. Emirates Mars Mission (Hope). NASA NSSDCA. Дата обращения: 19 декабря 2023.
  189. 1 2 Tianwen 1. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  190. Mars Science Laboratory (MSL). NASA NSSDCA. Дата обращения: 19 декабря 2023.
  191. InSight. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  192. 1 2 MARS 2020. NASA NSSDCA. Дата обращения: 19 декабря 2023.
  193. Хозяин седьмой планеты. Вокруг Света. Дата обращения: 19 декабря 2023.
  194. Садик на Марсе. Вокруг Света. Дата обращения: 19 декабря 2023.
  195. Земельные участки на Луне можно приобрести всего по $2,5 за сотку. РИА Новости. Дата обращения: 19 декабря 2023.
  196. Sagan C., 1980.
  197. Lubertozzi A., 2001, с. 3—31.
  198. Братья Стругацкие, 1968.
  199. Barsoom series. Goodreads. Дата обращения: 19 декабря 2023.
  200. Lewis C. S., 1938.
  201. Bradbury R., 1950.
  202. Mars. Warhammer 40k Wiki. Дата обращения: 19 декабря 2023.
  203. Jonathan Swift and the moons of Mars. David Darling. Дата обращения: 19 декабря 2023. Архивировано 9 августа 2011 года.
  204. Life on Mars? Genius. Дата обращения: 19 декабря 2023.
  205. Baker H. D., Robson E., Zólyomi G., 2010, с. 413—428.
  206. The Planet Mars: A History of Observation and Discovery. University of Arizona Press. Дата обращения: 19 декабря 2023.
  207. Олмстед А., 2022, с. 351.
  208. 1 2 Древнегреческие названия планет. taurus-ek.livejournal.com. Дата обращения: 19 декабря 2023.
  209. 1 2 Гигин. Астрономия. Проза.ру. Дата обращения: 19 декабря 2023.

    ПЛАНЕТЫ 42. …
    3. Третья звезда — Марса, другие называют её звездой Геркулеса. Она следует за звездой Венеры, по словам Эратосфена, вот по какой причине: когда Вулкан взял в жены Венеру, то своей бдительностью он не позволил Марсу добиться своего. Поэтому ничего другого тот, кажется, не добился от Венеры, кроме позволения, чтобы его звезда следовала за звездой Венеры. Поэтому Марс, сжигаемый страстной любовью, обнаружил это тем, что назвал звезду Пироэйс.

  210. Decimvs Magnvs Avsonivs. taurus-ek.livejournal.com. Дата обращения: 19 декабря 2023.
  211. Астрономический нейминг: планеты. Сhrdk.. Дата обращения: 19 декабря 2023.
  212. Марк Туллий Цицерон. О природе богов. Книга II. История Древнего Рима. Дата обращения: 19 декабря 2023.

    Ближайшую к нему (к Юпитеру) нижнюю орбиту занимает Πυρόεις, называемая также звездой Марса, она обходит тот же круг Зодиака, что и две верхние (Сатурн и Юпитер) за двадцать четыре месяца без шести, если я не ошибаюсь, дней.

  213. Williams G. M., 2003, с. 209.

Ссылки[править | править код]