Вполне вероятно, что Оберон сформировался из аккреционного диска, окружавшего Уран сразу после образования. Спутник состоит примерно из равного количества камня и льда и, вероятно, дифференцирован на каменное ядро и ледяную мантию. На их границе, возможно, есть слой жидкой воды[⇨].
Поверхность Оберона тёмная с красным оттенком. Его рельеф формировался в основном ударами астероидов и комет, создавшими многочисленные, до 210 км в диаметре, кратеры. Оберон обладает системой каньонов (грабенов), образовавшихся при растяжении коры в результате расширения недр на раннем этапе его истории[⇨].
Оберон, как и всю систему Урана, изучал с близкого расстояния лишь один космический аппарат — «Вояджер-2». Пролетев вблизи спутника в январе 1986 года, он сделал несколько снимков, которые позволили изучить около 40 % его поверхности.[⇨].
Оберон был открыт Уильямом Гершелем 11 января 1787 года (в один день с Титанией и через 6 лет после Урана)[1][9]. Позднее Гершель сообщил об открытии ещё четырёх спутников[10], но эти наблюдения оказались ошибочными[11]. В течение 50 лет после их открытия Титанию и Оберон не наблюдал никто, кроме Гершеля[12] из-за слабой проницающей способности телескопов того времени. Сейчас эти спутники можно наблюдать с Земли с помощью любительских телескопов высокого класса[7].
Первоначально Оберон называли «Вторым спутником Урана», а в 1848 году Уильям Лассел дал ему имя «Уран II»[13], хотя он иногда использовал и нумерацию Уильяма Гершеля, в которой Титания и Оберон именовались «Уран II» и «Уран IV» соответственно[14]. Наконец, в 1851 году Лассел обозначил четыре известных на тот момент спутника римскими цифрами в порядке их удаления от планеты. С тех пор Оберон носит обозначение «Уран IV»[15].
Впоследствии все спутники Урана были названы в честь персонажей произведений Вильяма Шекспира и Александра Поупа. Оберон получил своё название в честь Оберона — царя фей и эльфов из пьесы Шекспира «Сон в летнюю ночь»[16]. Названия для всех четырёх известных на тот момент спутников Урана были предложены сыном Гершеля, Джоном в 1852 году по просьбе Уильяма Лассела[17], который годом ранее обнаружил два других спутника — Ариэль и Умбриэль[18].
Единственные на сегодняшний день изображения Оберона, где видно детали поверхности, были получены космическим аппаратом «Вояджер-2». В январе 1986 года он сблизился с Обероном на расстояние в 470 600 км[19] и сделал снимки с разрешением около 6 километров (с лучшим разрешением были сняты только Миранда и Ариэль)[20]. Изображения охватывают 40 % поверхности спутника, но только 25 % засняты с качеством, достаточным для геологического картирования. Во время пролёта «Вояджера» Солнце освещало южное полушарие Оберона (как и других спутников), северное же полушарие было погружено в полярную ночь и, таким образом, не могло быть изучено[⇨][5].
До полёта «Вояджера-2» о спутнике было известно очень мало. В результате наземных спектрографических наблюдений было установлено наличие на Обероне водяного льда. Никакой другой космический аппарат никогда не посещал систему Урана и, в частности, Оберон. Не планируются посещения и в обозримом будущем.
Оберон — самый удалённый от Урана из пяти его крупных спутников[e]. Радиус его орбиты — 584 000 километров. Орбита имеет небольшой эксцентриситет и наклон к экватору планеты[2]. Его орбитальный период равен 13,46 суток и совпадает с периодом вращения вокруг своей оси. Иными словами, Оберон является синхронным спутником, всегда повёрнутым одной и той же стороной к планете[5]. Значительная часть орбиты Оберона проходит вне магнитосферы Урана[21]. В результате этого его поверхность подвержена прямому воздействию солнечного ветра[8]. А ведомое полушарие бомбардируется ещё и частицами магнитосферной плазмы, которые движутся вокруг Урана намного быстрее Оберона (с периодом, равным периоду осевого вращения планеты). Такая бомбардировка может приводить к потемнению этого полушария, что и наблюдается на всех спутниках Урана, кроме Оберона[⇨][8].
Так как Уран вращается вокруг Солнца «на боку», а плоскость его экватора примерно совпадает с плоскостью экватора (и орбиты) его крупных спутников, смена сезонов на них очень своеобразна. Каждый полюс Оберона 42 года находится в полной темноте и 42 года непрерывно освещён, причём во время летнего солнцестояния Солнце на полюсе почти достигает зенита[8]. Пролёт «Вояджера-2» в 1986 году совпал с летним солнцестоянием в южном полушарии, тогда как почти всё северное находилось в темноте.
Раз в 42 года, во время равноденствия на Уране, Солнце (и вместе с ним Земля) проходит через его экваториальную плоскость, и тогда можно наблюдать взаимные покрытия его спутников. Несколько таких событий наблюдалось в 2006—2007 годах, в том числе покрытие Умбриэля Обероном 4 мая 2007 года, которое продолжалось почти шесть минут[22].
Оберон. Самый большой кратер с тёмным дном (слева) — Гамлет; кратер Отелло находится левее и выше (около края диска)
Оберон — второй по величине и массе спутник Урана и девятый по массе спутник в Солнечной системе[f]. Плотность Оберона составляет 1,63 г/см³[4] (выше, чем у спутников Сатурна) и показывает, что Оберон состоит примерно в равных количествах из водяного льда и тяжёлых неледяных составляющих, которые могут включать камень и органику[5][23]. Наличие водяного льда (в виде кристаллов на поверхности спутника) показали и спектрографические наблюдения[8]. При сверхнизких температурах, характерных для спутников Урана, лёд становится подобным камню (лёд Ic). Его абсорбционные полосы на ведомом полушарии сильнее, чем на ведущем, тогда как у остальных спутников Урана — наоборот[8]. Причина этого различия полушарий неизвестна. Возможно, дело в том, что ведущее полушарие более подвержено метеоритным ударам, которые удаляют с него лёд[8]. Тёмный материал мог образоваться в результате воздействия ионизирующего излучения на органические вещества, в частности, на метан, присутствующий там в составе клатратов[5][24].
Оберон может быть дифференцирован на каменное ядро и ледяную мантию[23]. Если это действительно так, то по плотности спутника можно определить, что радиус ядра составляет около 63 % радиуса спутника (480 км), а масса ядра примерно равна 54 % массы Оберона. Давление в центре Оберона — около 0,5 ГПа (5 кбар)[23]. Состояние ледяной мантии неизвестно. Если лёд содержит достаточное количество аммиака или другого антифриза, то на границе ядра и мантии Оберона может быть жидкий океан. Толщина этого океана, если он существует, может достигать 40 километров, а температура составляет около 180 К[23]. Впрочем, внутреннее строение Оберона во многом зависит от его термальной истории, которая сейчас малоизвестна.
Поверхность Оберона довольно тёмная (из крупных спутников Урана темнее него только Умбриэль)[6]. Его альбедо Бонда — около 14 %[6]. Подобно Миранде, Ариэлю и Титании, Оберон демонстрирует сильный оппозиционный эффект: при увеличении фазового угла с 0° до 1° отражательная способность его поверхности уменьшается с 31 % до 22 %[6]. Это указывает на её большую пористость (вероятно, результат микрометеоритной бомбардировки)[25]. Поверхность спутника в основном красного цвета, за исключением белых или слегка голубоватых свежих выбросов вокруг ударных кратеров[26]. Оберон — самый красный среди крупных спутников Урана. Его ведущее полушарие намного краснее ведомого, поскольку на нём больше тёмно-красного материала. Обычно покраснение поверхности небесных тел — результат космического выветривания, вызванного бомбардировкой поверхности заряженными частицами и микрометеоритами[24]. Однако в случае с Обероном покраснение поверхности, вероятно, вызвано оседанием красноватого материала, который поступает из внешней части системы Урана (возможно, с нерегулярных спутников). Это оседание происходит в основном на ведущем полушарии[27].
Подписаны все детали рельефа, которым присвоены имена по состоянию на 2018 год (9 кратеров и 1 каньон)
Названия на Обероне получили 9 кратеров и 1 каньон[28][5]. Концентрация кратеров на Обероне больше, чем на других спутниках Урана. Поверхность насыщена ими, то есть при появлении новых кратеров разрушается примерно столько же старых, и их количество не меняется. Это показывает, что поверхность Оберона древнее, чем поверхность остальных спутников Урана[20], и говорит о давнем отсутствии на ней геологической активности. Диаметр самого большого из обнаруженных кратеров[20] — кратера Гамлет[29] — составляет 206 километров. От многих кратеров расходятся светлые лучи, предположительно, выбросы льда[5]. Дно самых больших кратеров тёмное. На некоторых снимках на лимбе Оберона видно 11-километровую возвышенность. Не исключено, что это — центральная горка ещё одного кратера, и тогда его диаметр должен быть около 375 км[30].
Поверхность Оберона пересечена системой каньонов (хотя там они гораздо менее распространены, чем на Титании[5]). Каньоны (лат.chasma, мн. ч. chasmata) — это длинные впадины с крутыми склонами; вероятно, они образовались вследствие разломов. Возраст разных каньонов заметно различается. Некоторые из них пересекают выбросы из кратеров с лучами, показывая, что эти кратеры старше разломов[31]. Самый заметный каньон Оберона — каньон Моммур[32].
Рельеф Оберона сформирован двумя противодействующими процессами: образованием ударных кратеров и эндогенным восстановлением поверхности[31]. Первый процесс является основным и действует на протяжении всей истории спутника[20], а второй — лишь в её начале, когда недра спутника ещё сохраняли геологическую активность. Эндогенные процессы на Обероне имеют в основном тектоническую природу. Они привели к образованию каньонов — гигантских трещин в ледяной коре. Растрескивание коры было вызвано, скорее всего, расширением Оберона, которое произошло в два этапа, соответствующих появлению старых и молодых каньонов. При этом площадь его поверхности увеличилась примерно на 0,5 % и 0,4 % соответственно[31].
На дне крупнейших кратеров Оберона (таких как Гамлет, Макбет и Отелло) видно тёмное вещество. Кроме того, тёмные пятна есть и вне кратеров — в основном на ведущем полушарии. Некоторые учёные предполагают, что эти пятна — следствие криовулканизма[20], когда сквозь образовавшиеся разрывы в ледяной коре на поверхность изливалась загрязнённая вода, которая при застывании образовала тёмную поверхность. Таким образом, это — аналоги лунных морей, где вместо воды была лава. По другой версии тёмное вещество выбито из глубинных слоёв ударами метеоритов, что возможно, если Оберон в некоторой мере дифференцирован, то есть имеет ледяную кору и недра из более тёмного материала[26].
Названия деталей рельефа Оберона[28] (даны в честь персонажей произведений Шекспира и связанных с ними географических объектов)[33][34]
Как и все крупные спутники Урана, Оберон, вероятно, сформировался из газо-пылевого аккреционного диска, который либо существовал вокруг Урана в течение какого-то времени после формирования планеты, либо появился при гигантском столкновении, которое, скорее всего, и дало Урану очень большой наклон оси вращения[35]. Точный состав диска неизвестен, однако более высокая плотность спутников Урана по сравнению со спутниками Сатурна указывает на то, что он содержал относительно мало воды[g][5]. Значительное количество углерода и азота могло находиться в виде оксида углерода (CO) и молекулярного азота (N2), а не метана и аммиака[35]. Спутник, сформировавшийся из такого диска, должен содержать меньше водяного льда (с клатратами CO и N2) и больше каменистых пород, что объяснило бы его высокую плотность[5].
Образование Оберона, вероятно, продолжалось в течение нескольких тысяч лет[35]. Столкновения, сопровождавшие аккрецию, нагревали внешние слои спутника[36]. Максимальная температура (около 230 K), вероятно, была достигнута на глубине около 60 километров[36]. После завершения формирования внешний слой Оберона остыл, а внутренний стал нагреваться из-за распада радиоактивных элементов в его недрах[5]. Поверхностный слой за счёт охлаждения сжимался, в то время как нагревающийся внутренний расширялся. Это вызвало в коре Оберона сильное механическое напряжение, которое могло привести к образованию разломов. Возможно, именно так появилась существующая сейчас система каньонов. Этот процесс длился около 200 миллионов лет[37] и, следовательно, прекратился несколько миллиардов лет назад[5].
Тепла от изначальной аккреции и продолжавшегося далее распада радиоактивных элементов могло хватить для плавления льда в недрах, если в нём присутствовали какие-либо антифризы — аммиак или соль[36]. Таяние могло привести к отделению льда от камня и формированию каменного ядра, окруженного ледяной мантией. На их границе мог появиться слой жидкой воды, содержащей аммиак. Эвтектическая температура их смеси — 176 К[23]. Если температура океана опускалась ниже этого значения, то сейчас он замёрзший. Замерзание привело бы к его расширению и растрескиванию коры и образованию каньонов[20]. Тем не менее, современные знания о геологической истории Оберона являются весьма ограниченными.
Вокруг событий, произошедших с земной экспедицией на Обероне, строится сюжет научно-фантастической дилогии Сергея Павлова «Лунная радуга». По первой повести дилогии был снят одноимённый позднесоветский фильм.
Одна из повестей американского писателя-фантаста Эдмонда Гамильтона — «Сокровище Громовой Луны» — описывает Оберон как планету, покрытую вулканами, с каменной поверхностью и с океанами из жидкой лавы, живыми существами-«огневиками» и залежью редчайшего элемента-антигравитанта — «левиума».
Оберон также упомянут в песне Юрия Визбора «Да будет старт», посвященной космонавтам: Мы построим лестницу до звёзд, мы пройдем сквозь чёрные циклоны от смоленских солнечных берез до туманных далей Оберона….
Профессор Никлаус Вирт назвал свой последний язык программирования Обероном в честь этого спутника Урана[38].
↑Hidas M.G.; Christou, A.A.; Brown, T.M. An observation of a mutual event between two satellites of Uranus (англ.) // Monthly Notices of the Royal Astronomical Society: Letters. — 2008. — Vol. 384, no. 1. — P. L38–L40. — doi:10.1111/j.1745-3933.2007.00418.x. — Bibcode: 2008MNRAS.384L..38H.
↑Buratti B. J., Thomas P. C.4.4. The Satellites of Uranus // Encyclopedia of the Solar System / T. Spohn, D. Breuer, T. Johnson. — 3. — Elsevier, 2014. — P. 774. — 1336 p. — ISBN 9780124160347.
↑ 12Helfenstein P.; Hiller, J.; Weitz, C. and Veverka, J. Oberon: color photometry and its geological implications (англ.) // Abstracts of the Lunar and Planetary Science Conference. — Houston: Lunar and Planetary Sciences Institute, 1990. — Vol. 21. — P. 489—490. — Bibcode: 1990LPI....21..489H.
↑Oberon: Mommur Chasma (неопр.). Gazetteer of Planetary Nomenclature. USGS Astrogeology. Дата обращения: 21 октября 2022. Архивировано 21 января 2022 года.
↑Strobell M.E.; Masursky, H. New Features Named on the Moon and Uranian Satellites (англ.) // Abstracts of the Lunar and Planetary Science. — 1987. — Vol. 18. — P. 964—965. — Bibcode: 1987LPI....18..964S.