Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 мая 2021 года; проверки требует 1 правка.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 мая 2021 года; проверки требует 1 правка.
Обычно дифференциальное уравнение имеет не одно решение, а целое их семейство. Начальные и граничные условия позволяют выбрать из него одно, соответствующее реальному физическому процессу или явлению. В теории обыкновенных дифференциальных уравнений доказана теорема существования и единственности решения задачи с начальным условием (т. н. задачи Коши). Для уравнений в частных производных получены некоторые теоремы существования и единственности решений для определённых классов начальных и краевых задач.
Задачи математической физики описывают реальные физические процессы, а потому их постановка должна удовлетворять следующим естественным требованиям:
Решение должно существовать в каком-либо классе функций;
Решение должно быть единственным в каком-либо классе функций;
Решение должно непрерывно зависеть от данных (начальных и граничных условий, свободного члена, коэффициентов и т. д.).
Требование непрерывной зависимости решения обусловливается тем обстоятельством, что физические данные, как правило, определяются из эксперимента приближённо, и поэтому нужно быть уверенным в том, что решение задачи в рамках выбранной математической модели не будет существенно зависеть от погрешности измерений. Математически это требование можно записать, например, так (для независимости от свободного члена):
Пусть задано два дифференциальных уравнения: с одинаковыми дифференциальными операторами и одинаковыми граничными условиями, тогда их решения будут непрерывно зависеть от свободного члена, если:
, где , - решения соответствующих уравнений.
Множество функций, для которых выполняются перечисленные требования, называется классом корректности. Некорректную постановку граничных условий хорошо иллюстрирует пример Адамара.
Ахтямов А. М. Теория идентификации краевых условий и её приложения. — М.: Физматлит, 2009.
Ахтямов А. М., Садовничий В. А., Султанаев Я. Т. Обратные задачи Штурма-Лиувилля с нераспадающимися краевыми условиями. — М.: Издательство Московского университета, 2009.