Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 октября 2022 года; проверки требуют 2 правки.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 октября 2022 года; проверки требуют 2 правки.
В физике СДУ традиционно записывают в форме уравнения Ланжевена. И часто, но не совсем точно, называют самим уравнением Ланжевена, хотя СДУ можно записать многими другими способами. СДУ в форме уравнения Ланжевена состоит из обычного нестохастического дифференциального уравнения и дополнительной части, описывающей белый шум. Вторая распространенная форма — уравнение Фоккера-Планка, которое представляет собой уравнение в частных производных и описывает эволюцию плотности вероятности во времени. Третья форма СДУ чаще используется в математике и финансовой математике, она напоминает уравнения Ланжевена, но записана с использованием стохастических дифференциалов (см. подробности ниже.
Так же как и для обычных дифференциальных уравнений, важно знать имеет ли СДУ решение и, если имеет, единственно ли это решение. Приведем формулировку теоремы существования и единственности для уравнения Ито. Доказательство можно найти в Øksendal (2003, § 5.2).
В физике СДУ часто записывают в форме уравнения Ланжевена. Например, систему СДУ первого порядка можно записать в виде:
где — набор неизвестных, и — произвольные функции, а — случайные функции от времени, которые часто называют шумовыми членами. Такая форма записи используется, так как существует стандартная техника преобразования уравнения со старшими производными в систему уравнений первого порядка с помощью введения новых неизвестных. Если — константы, то говорят, что система подвержена аддитивному шуму. Также рассматривают системы с мультипликативным шумом, когда . Из этих двух рассмотренных случаев аддитивный шум — проще. Решение системы с аддитивным шумом часто можно найти используя только методы стандартого математического анализа. В частности, можно использовать обычный метод композиции неизвестных функций. Однако, в случае мультипликативного шума уравнение Ланжевена плохо определено в смысле обычного математического анализа и его необходимо интерпретировать в терминах исчисления Ито или исчисления Стратоновича.
В физике основным методом решения СДУ является поиск решения в виде плотности вероятности и преобразование первоначального уравнения в уравнение Фоккера — Планка. Уравнение Фоккера — Планка — дифференциальное уравнение в частных производных без стохастических членов. Оно определяет временную эволюцию плотности вероятности, также как уравнение Шрёдингера определяет зависимость волновой функции системы от времени в квантовой механике или уравнение диффузии задает временную эволюцию химической концентрации. Также решения можно искать численно, например с помощью метода Монте-Карло. Другие техники нахождения решений используют интеграл по путям, эта техника базируется на аналогии между статистической физикой и квантовой механикой (например, уравнение Фоккера-Планка можно преобразовать в уравнение Шрёдингера с помощью некоторого преобразования переменных), или решением обыкновенных дифференциальных уравнений для моментов плотности вероятности.
Adomian, George. Nonlinear stochastic systems theory and applications to physics (англ.). — Dordrecht: Kluwer Academic Publishers Group, 1989. — (Mathematics and its Applications (46)).
Øksendal, Bernt K. Stochastic Differential Equations: An Introduction with Applications (англ.). — Berlin: Springer, 2003.
Teugels, J. and Sund B. (eds.). Encyclopedia of Actuarial Science (англ.). — Chichester: Wiley, 2004. — P. 523—527.