Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 апреля 2016 года; проверки требуют 4 правки.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 апреля 2016 года; проверки требуют 4 правки.
Метод Годунова
Метод Годунова — реализация схем сквозного счета, с помощью которых можно рассчитывать газодинамические течения с разрывами параметров внутри расчётной области. Эта схема предложена С. К. Годуновым в 1959 г.
Метод Годунова — это вариант метода контрольного объёма.
Потоки через боковые грани определяются из решения задачи о распаде произвольного разрыва.
Поясним на примере.
Рассмотрим построение численного метода Годунова первого порядка точности на примере решения системы уравнений одномерной нестационарной газовой динамики, записанной в дивергентной форме:
Вместо дифференциальной формы уравнений выведем новую интегральную форму уравнений, более приспособленную для представления слабого решения. Здесь под слабым решением понимается обобщённая функция, определяемая интегральными равенствами, полученными из соответствующих дифференциальных уравнений и начальных условий задачи. Для этого выделим некоторый контрольный объём и проинтегрируем систему уравнений по этому объёму. Применим обобщённую теорему Стокса к полученному интегралу от дивергенции (при двух независимых переменных это будет теорема Грина, и формула Остроградского-Гаусса в трёхмерном пространстве). При этом введем направление обхода контура против часовой стрелки.
Произведен переход от дифференциальной формы записи исходной системы уравнений к интегральной форме.
Интегральная форма записывается в виде равенства нулю интегралов по контуру (границе выделенного контрольного объёма) от векторов консервативных переменных и потоков.
Контурный интеграл представляем в виде суммы интегралов по участкам (интервалам) 1-2, 2-3, 3-4, 4-1 контрольного объёма на рисунке (которого пока нет) и на каждом участке аппроксимируем интеграл с использованием метода прямоугольников как произведение подынтегрального выражения
в центре интервала на длину интервала интегрирования:
с учётом равенств, справедливых для контрольного объёма,
построенного по декартовой расчётной сетке:
кроме того:
находим значения вектора консервативных переменных на интервале 3-4, принадлежащем новому слою:
В данном случае величинами с полуцелыми индексами обозначены потоки сохраняемых величин через границы расчётной ячейки за время или потоки через боковые грани (2-3 и 4-1) контрольного объёма. Если скорость потока направлена в одну сторону с внешней нормалью к боковой грани, то поток отрицательный, то есть вытекает из контрольного объёма и наоборот.
Особенностью постановки и реализации граничных условий в методах контрольного объёма
(в том числе и в методе Годунова) является необходимость задания или расчета потоков через грань контрольного объёма, совпадающую границей расчётной области. Для первой и последней ячеек расчётного слоя надо определить потоки массы, импульса и энергии через грани.
Часто для задания граничных условий вводятся «виртуальные» расчётные ячейки. Для этого слева от первой ячейки и справа от последней ячейки вводится ещё по одной дополнительной ячейке, в каждой из которых задаются такие параметры течения, чтобы при решении задачи Римана на боковой грани моделировались требуемые потоки.
Главное условие — отсутствие перетекания потока массы газа через границу, что соответствует условию нулевой скорости потока на данной грани
В виртуальной ячейке тогда нужно задать следующие параметры течения:
Шаг расчётной сетки по временной координате в методе Годунова можно определить из критерия устойчивости Куранта — Фридрихса — Леви.
Применительно к рассматриваемой схеме это условие формулируется следующим образом:
Волны, возникающие в задаче распада произвольного разрыва в точке , не должны за время достигать боковых граней и и искажать автомодельное решение.
Реализация этого принципа приводит к следующим соотношениям:
где
— значение скорости самой левой волны в распаде разрыва;
— значение скорости самой правой волны в распаде разрыва;