Тучные клетки присутствуют в большинстве тканей и, как правило, располагаются вблизи сосудов и нервов. Они особенно многочисленны в тканях, залегающих на границе организма с внешней или внутренней средой.
Морфологически тучные клетки очень близки к базофилам в кровотоке. И тучные клетки, и базофилы содержат базофильные гранулы с гепарином и гистамином. Однако между двумя типами клеток есть и различия в строении: так, у тучных клеток ядро округлое, а у базофилов разделено на доли. Округлое ядро мастоцитов находится центрально, часто замаскировано цитоплазматическими гранулами[5]. Тучные клетки и базофилы связываются с Fc-участками молекулиммуноглобулинов E (IgE), связавшими антиген (кросс-связывание), в результате чего запускается высвобождение содержимого гранул. Из-за сходства с базофилами тучные клетки иногда называют тканевыми базофилами. Кроме того, базофилы и тучные клетки происходят от одного и того же костномозгового предшественника, экспрессирующегоCD34. Базофилы покидают костный мозг зрелыми, в то время как созревание тучных клеток завершается после их оседания в тканях. Место оседания тучных клеток может влиять на некоторые их свойства[6].
У человека тучные клетки подразделяют на слизистые, или мукозные (тип t) и серозные (тип ct) на основании их локализации и наличия триптазы (t) или химазы (ct) в гранулах. Мукозные тучные клетки находятся в основном в подслизистом слое слизистых оболочек, а серозные — в серозных полостях, дерме, миндалинах. Оба типа мастоцитов образуются в костном мозге, но клетки t-типа в своем развитии зависят от тимуса. Серозные тучные клетки более долговечны, чем мукозные, и крупнее мукозных: их диаметр составляет 10—12 мкм против 5—10 мкм у мукозных[12]. Главным ростовым фактором для обоих типов тучных клеток является SCF, для слизистых тучных клеток в роли кофактора выступают IL-3 и IL-4, для серозных — только IL-3. В слизистых тучных клетках преобладающим протеогликаном является хондроитинсульфат, в серозных — гепарин. Слизистые мастоциты, кроме того, интенсивнее экспрессируют FcεRI и содержат больше IgE в цитоплазме по сравнению с серозными. Преобладающим эйкозаноидом у слизистых тучных клеток являются лейкотриены, а у серозных — простагландины[7].
FcεR1 представляет собой высокоаффинный рецептор IgE на поверхности тучных клеток. FcεR1 — тетрамер из одной α-, одной β- и двух γ-цепей, соединённых дисульфидными мостиками. Сайт связывания IgE сформирован внеклеточной частью α-цепи, содержащей два домена, близких к иммуноглобулиновым[13]. В состав β-цепи и каждой из двух γ-цепей входит активирующий мотивITAM. Активирующий сигнальный каскад на FcεR1 запускается, когда ITAM в составе β- и γ-цепей фосфорилируются по остаткам тирозина[14].
Схема активации тучной клетки
Сигнальный путь, активирующийся при кросс-связывании FcεR1 с аллергеном при участии IgE, очень похож на тот, который запускается при активации лимфоцитовантигенами. С цитоплазматической частью β-цепи FcεR1 связана тирозинкиназаLyn, и после кросс-связывания FcεR1 с аллергеном она фосфорилирует мотивы ITAM в β- и γ-цепях FcεR1. Другая тирозинкиназа, Syk, связывается с фосфорилированными ITAM в γ-цепях и активируется[14], фосфорилируя множество других белков и активируя их, тем самым увеличивая сигнал[15].
Активированные тучные клетки синтезируют и выделяют эйкозаноиды и цитокины. Среди эйкозаноидов в тучных клетках наиболее активно синтезируются лейкотриен C4 и простагландин E2[9]. Образование эйкозаноидов контролирует цитозольный фермент фосфолипаза A2, который активируется при повышении концентрации кальция в цитозоле или фосфорилировании[16].
Тучные клетки принимают участие в развитии аллергических и анафилактических реакций. Высвобождение содержимого гранул при связывании Fc-участка антител IgE, связавших антиген, с рецепторами FcεRI на мастоцитах приводит к проявлению всех основных реакций гиперчувствительности немедленного типа. Дегрануляция не приводит к гибели клеток, и после выброса гранулы восстанавливаются. Также дегрануляция запускается при повышении внутриклеточной концентрации цАМФ и цитозольной концентрации ионов кальция. Благодаря наличию паттернраспознающих рецепторовTLR2, TLR3 и TLR4 тучные клетки могут напрямую распознавать патогены и характерные для них молекулы[9]. Кроме того, за счет специальных рецепторов на тучных клеток их могут активировать некоторые компоненты комплемента[6].
Гистамин, входящий в состав гранул тучных клеток, вызывает расширение посткапиллярныхвенул, активирует эндотелий и повышает проницаемость сосудов. Выделение гистамина приводит к локальной эдеме (набуханию), покраснению, увеличению температуры и поступлению других иммунных клеток в очаг активации мастоцитов. Гистамин также деполяризует нервные окончания, что вызывает болевые ощущения[6].
В пищеварительном тракте слизистые мастоциты находятся рядом с сенсорными нервными окончаниями[20][19][18]. Когда они подвергаются дегрануляции, они высвобождают медиаторы, активирующие висцеральные афферентныенейроны и повышают экспрессию мембранных ноцицепторов в них, связываясь с соответствующими рецепторами на поверхности нейронов[20]. В результате этого процесса могут развиться нейрогенное воспаление, висцеральная гиперчувствительность и нарушения перистальтики кишечника[20]. Активированные нейроны выделяют нейропептиды, такие как вещество P и CGRP, которые связываются с соответствующими рецепторами на тучных клетках и запускают их дегрануляцию, приводящую к выделению таких веществ, как β-гексозаминидаза, цитокины, хемокины, простагландин D2, лейкотриены и эоксины[20].
Общий предок тучных клеток находится в костном мозге, а окончательная дифференцировка предшественников этих клеток происходит в селезёнке. Далее в кровоток выходят предшественники тучных клеток, у человека имеющие фенотипCD13+CD33+CD34+CD38+CD117+. Из кровотока предшественники мастоцитов мигрируют в ткани (наиболее интенсивно — в слизистую кишечника), где их дифференцировка завершается. Главные ростовые факторы тучных клеток — SCF и IL-3, кофакторами выступают IL-4, IL-9, IL-10 и фактор роста нервов (NGF). В слизистых оболочках для развития тучных клеток необходим IL-33. Тучные клетки весьма долговечны (срок жизни исчисляется месяцами и годами) и в зрелой форме сохраняют способность к делению[21].
Тучные клетки имеются у представителей всех классовпозвоночныхживотных. Рецепторы FcεRI тучные клетки приобрели, по-видимому, на поздних этапах эволюции, поскольку антитела IgE имеются только у млекопитающих. Триптаза и гистамин имеются в гранулах тучных клеток уже у костистых рыб, и именно у них тучные клетки оформились в том виде, в каком они присутствуют у высших позвоночных. Клетки, от которых, возможно, произошли мастоциты, были идентифицированы у асцидий. Эти клетки содержат гистамин и гепарин и выполняют защитные функции. Кроме того, структурно к тучным клеткам близки некоторые гемоциты членистоногих. Первые тучные клетки, вероятно, появились около 450—500 млн лет назад у последнего общего предка круглоротых, хрящевых рыб и высших позвоночных[22].
Развитие анафилаксии вследствие активации тучных клеток
Выделяют группу заболеваний, известных как расстройства активации тучных клеток (англ.mast cell activation disorders). К ним относят нарушения со стороны иммунной системы, не связанные с заражением патогеном и имеющие схожие симптомы, связанные с несвоевременной активацией тучных клеток. Классификация расстройств активации тучных клеток и их диагностические критерии были предложены в 2010 году[23][24].
Тучные клетки лежат в основе развития аллергии и анафилаксии. Преимущественно с активацией тучных клеток связаны многие формы кожных аллергических реакций и аллергических реакций со стороны слизистых. Тучные клетки играют ключевую роль в развитии астмы, экземы, чесотки, аллергического ринита и аллергического конъюнктивита. Для устранения симптомов аллергии часто применяют антигистаминные препараты, блокирующие связывание гистамина с нервными окончаниями. Препараты на основе кромоглициевой кислоты блокируют кальциевые каналы, необходимые для дегрануляции тучных клеток, благодаря чему стабилизируют мастоциты и предотвращают выделение гистамина и других медиаторов. Антагонисты лейкотриенов, такие как монтелукаст и зафирлукаст, блокируют действие лейкотриенов и находят всё большее применение в устранении симптомов аллергии[6]. При анафилаксии происходит резкое и мощное высвобождение содержимого гранул тучных клеток в организме, что может привести к смерти[25]. Мастоциты связаны с развитием некоторых аутоиммунных заболеваний, таких как ревматоидный артрит и буллёзный пемфигоид[26].
Повышенное количество тучных клеток и их CD34+ клеток-предшественников приводят к развитию состояния, известного как мастоцитоз[27]. Часто мастоцитоз связан с мутациямигена, кодирующего CD117 — рецептор SCF[23]. Иногда из тучных клеток развиваются опухоли — мастоцитомы, при которых в организме накапливается избыточное количество медиаторов, содержащихся в гранулах тучных клеток[23][24]. Мастоцитомы часто встречаются у кошек и собак[28]. С тучными клетками связаны некоторые другие неоплазии, в частности, чрезвычайно агрессивные тучноклеточная саркома[29] и острый тучноклеточный лейкоз[30].
Тучные клетки впервые описал Пауль Эрлих в 1878 году в своей докторской диссертации, где он также охарактеризовал их гранулы. Эрлих ошибочно решил, что тучные клетки питают окружающие ткани, поэтому назвал их Mastzellen (от нем.Mast — откармливать). Впоследствии было показано, что тучные клетки функционально относятся к иммунной системе[31][32].
↑Horny H. P., Sotlar K., Valent P.Mastocytosis: state of the art. (англ.) // Pathobiology : Journal Of Immunopathology, Molecular And Cellular Biology. — 2007. — Vol. 74, no. 2. — P. 121—132. — doi:10.1159/000101711. — PMID 17587883. [исправить]