Пусть и — два множества с выделенными алгебрами подмножеств. Тогда функция называется -измеримой, или просто измеримой, если прообраз любого множества из принадлежит , то есть
В 1901 году французский математик А. Лебег, на основе построенной им теории интеграла Лебега, поставил задачу: найти класс функций, более широкий, чем аналитические, однако при этом допускающий применение к нему многих аналитических методов.
К этому времени уже существовала общая теория меры, разработанная Э. Борелем (1898), и первые работы Лебега опирались на борелевскую теорию.
В диссертации Лебега (1902) теория меры была обобщена до так называемой меры Лебега.
Лебег определил понятия измеримых множеств, ограниченных измеримых функций и интегралов для них, доказал, что все «обычные» ограниченные функции, исследуемые в анализе, измеримы, и что класс измеримых функций замкнут относительно основных аналитических операций, включая операцию предельного перехода.
В 1904 году Лебег обобщил свою теорию, сняв условие ограниченности функции.
Исследования Лебега нашли широкий научный отклик, их продолжили и развили многие математики: Э Борель, М. Рис, Дж. Витали, М. Р. Фреше, Н. Н. Лузин, Д. Ф. Егоров и др.
Было введено понятие сходимости по мере (1909), глубоко исследованы топологические свойства класса измеримых функций.
Труды Лебега имели ещё одно важное концептуальное значение: они были полностью основаны на спорной в те годы канторовскойтеории множеств, и плодотворность лебеговской теории послужила веским аргументом для принятия теории множеств как фундамента математики.