Впервые сообщения об открытии элемента 108 появились в начале 1970 года и были совершенно неожиданными для экстремально короткоживущих и трудноуловимых сверхтяжёлых химических элементов. По результатам экспедиции в пустынном районе вблизи полуострова Челекен у Каспийского моря группой учёных СССР под руководством В. В. Чердынцева на основании фиксирования треков (следов ядер) на образцах минерала молибденита был сделан смелый вывод об обнаружении элемента 108 с атомной массой 267 в природе. Сообщения об этом «открытии» попала в журнал «Наука и жизнь» (02/1970) и другие СМИ и в апреле 1970 года были обсуждены на заседаниях институтов АН СССР (геохимического, физических проблем). Впоследствии научная достоверность заключения была оспорена как недостаточно доказанная[3][4].
Достоверно элемент 108 был открыт в 1984 в Центре исследования тяжёлых ионов (нем.Gesellschaft für Schwerionenforschung, GSI), Дармштадт, Германия в результате бомбардировки свинцовой (208Pb) мишени пучком ионов железа-58 из ускорителяUNILAC[2]. В результате эксперимента были синтезированы 3 ядра 265Hs, которые были надёжно идентифицированы по параметрам цепочки α-распадов[5]. В весовых количествах не получен. Степени окисления от +2 до +8, расчётная конфигурация внешних электронных оболочек атома 5f146d67s2[2].
Одновременно и независимо эта же реакция исследовалась в ОИЯИ (Дубна, Россия), где по наблюдению трёх событий α-распада ядра 253Es также был сделан вывод о синтезе в этой реакции ядра 265Hs, подверженного α-распаду[6]. Поскольку методика, использовавшаяся в Дубне, не позволяла зарегистрировать распад самого ядра 265Hs[7].
В 1985 году Международный союз теоретической и прикладной химии (IUPAC) и Международный союз теоретической и прикладной физики (IUPAP) создали рабочую группу Transfermium (TWG) для оценки открытий и определения окончательных названий элементов с атомными номерами более 100. Рабочая группа провела встречи с делегатами из трёх конкурирующих институтов; в 1990 году они установили критерии признания химических элементов, а в 1991 году закончили работу по оценке открытий. В 1993 году рабочая группа IUPAC опубликовала результаты, согласно которым основная заслуга в открытии элемента 108 принадлежит группе из Дармштадта[7].
Первоначально, при т. н. «обнаружении элемента в природе», его назвали сергений (sergenium, Sg) (на то время эти символы не были заняты сиборгием) по местности обнаружения — в районе античного города Серика на Великом Шёлковом Пути. В связи с неподтверждённостью открытия и географической привязанностью это название более не предлагалось и вскоре исчезло из научного и информационного пространства.
После удачного искусственного синтеза элемент 108 предлагалось назвать оттоганий (ottohahnium, Oh) в честь Отто Гана — одного из учёных, открывших процесс деления ядер.
В 1994 году IUPAC по устоявшейся традиции (только по фамилии) порекомендовала для элемента название ганий (hahnium, Hn)[8].
Но в 1997 году она изменила свою рекомендацию и утвердила название хассий[2][9] в честь немецкой земли Гессен (Hassia — латинское название средневекового княжества Гессен, центром которого был Дармштадт)[10].
Хассий не имеет стабильных изотопов. Несколько радиоактивных изотопов были синтезированы в лаборатории либо путём слияния двух атомов, либо путём наблюдения распада более тяжёлых элементов. Сообщалось о двенадцати изотопах с массовыми числами от 263 до 277 (за исключением 272, 274 и 276), четыре из которых — 265Hs, 267Hs, 269Hs и 277Hs — имеют известные метастабильные состояния[11], хотя для 277Hs это не подтверждено[12]. Большинство из этих изотопов распадаются преимущественно через α-распад. Он наиболее распространённый из всех изотопов, для которых доступны всесторонние характеристики распада. Единственное исключение — 277Hs, который подвергается самопроизвольному делению[11]. Самые лёгкие изотопы, которые обычно имеют более короткие периоды полураспада, были синтезированы путём прямого синтеза между двумя более лёгкими ядрами и в качестве продуктов распада. Самым тяжёлым изотопом, полученным прямым слиянием, является 271Hs; более тяжёлые изотопы наблюдались только как продукты распада элементов с большими атомными номерами[13]. Наиболее стабильным изотопом хассия является 269Hs (α-излучатель)[2].
Может образовывать тетраоксид хассия (HsO4), который является менее летучим, чем тетраоксид осмия, а при реакции с гидроксидом натрия образует хассат натрия(VIII) Na2[HsO4(OH)2][16][17].
↑von Zweidorf, A. Final result of the CALLISTO-experiment: Formation of sodium hassate(VIII) // Advances in Nuclear and Radiochemistry / A. von Zweidorf, R. Angert, W. Brüchle. — Forschungszentrum Jülich, 2003. — Vol. 3. — P. 141–143. — ISBN 978-3-89336-362-9.
Хассий / Мясоедов Б. Ф. // Уланд — Хватцев. — М. : Большая российская энциклопедия, 2017. — С. 787. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 33). — ISBN 978-5-85270-370-5.
Hoffman, D. C.; Lee, D. M.; Pershina, V.Transactinides and the future elements // The Chemistry of the Actinide and Transactinide Elements (англ.) / L. R.; Morss; Edelstein, N. M.; Fuger, J.. — 3rd. — Springer Science+Business Media, 2006. — ISBN 978-1-4020-3555-5.
Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Khuyagbaatar, J.; Ackermann, D.; Antalic, S.; Barth, W.; Block, M.; Burkhard, H. G.; Comas, V. F.; Dahl, L.; Eberhardt, K.; Gostic, J.; Henderson, R. A.; Heredia, J. A.; Heßberger, F. P.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Kratz, J. V.; Lang, R.; Leino, M.; Lommel, B.; Moody, K. J.; Münzenberg, G.; Nelson, S. L.; Nishio, K.; Popeko, A. G.; Runke, J. The reaction 48Ca + 248Cm → 296116* studied at the GSI-SHIP (англ.) // The European Physical Journal A : journal. — 2012. — Vol. 48, no. 5. — P. 62. — doi:10.1140/epja/i2012-12062-1. — Bibcode: 2012EPJA...48...62H.