Только около 18 000 тонн естественно образовавшегося технеция могло быть найдено в любой момент времени в земной коре до начала ядерной эры. Природный технеций является продуктом самопроизвольного деления урановой руды и ториевой руды или продуктом захвата нейтронов в молибденовых рудах. Наиболее распространённым природным изотопом является 99Tc. Весь остальной технеций на Земле произведён синтетически как продукт деления урана-235 и других делящихся ядер в ядерных реакторах всех типов (энергетических, военных, исследовательских и т. п.) и в случае переработки отработанного ядерного топлива извлекается из ядерных топливных стержней. Либо, при отсутствии переработки, обеспечивает их остаточную радиоактивность 2 млн и более лет.
С 1860-х по 1871 год ранние формы периодической таблицы, предложенные Дмитрием Менделеевым, содержали разрыв между молибденом (элемент 42) и рутением (элемент 44). В 1871 году Менделеев предсказал, что этот недостающий элемент займёт пустующее место под марганцем и будет иметь аналогичные химические свойства. Менделеев дал ему предварительное название «экамарганец», потому что предсказанный элемент был на одно место ниже известного элемента марганец[4]. Многие ранние исследователи до и после публикации периодической таблицы стремились первыми открыть и назвать недостающий элемент.
Немецкие химики Вальтер Ноддак, Отто Берг и Ида Такке сообщили об открытии 75-го и 43-го элемента в 1925 году и назвали элемент 43 мазурием (в честь Мазурии в восточной Пруссии, ныне в Польше, регионе, где родилась семья Вальтера Ноддака)[5]. Группа бомбардировала колумбит пучком электронов и определила присутствие 43-го элемента, изучив рентгеновские эмиссионные спектрограммы[6]. Длина волны испускаемого рентгеновского излучения связана с атомным номером соотношением формулы, выведенной Генри Мозли в 1913 году. Команда утверждала, что обнаружила слабый рентгеновский сигнал на длине волны, создаваемой 43-м элементом. Более поздние экспериментаторы не смогли повторить открытие, и на многие годы оно было отклонено как ошибочное[7][8]. Тем не менее, в 1933 году в серии статей об открытии 43-го элемента элемент назывался мазурием[9]. Вопрос о том, действительно ли команда Ноддак в 1925 году открыла 43-й элемент, всё ещё обсуждается[10].
Технеций — радиоактивныйпереходныйметалл. В компактном виде он — металл серебристо-серого цвета с гексагональной решёткой (a = 2,737 Å, с = 4,391 Å), тогда как нанодисперсный металл, образующийся при восстановлении на высокодисперсном носителе[18] или при электролитическом осаждении на поверхности фольги имеет кубическую решетку[19] (a = 3.7 — 3.9 Å) [1].
С спектре ЯМР-Tc-99 нанодисперсного технеция отсутствует расщепление полосы поглощения, в то время как гексагональный объемный технеций имеет спектр Tc-99-ЯМР, разделенный на 9 сателлитов [2]. Атомарный технеций имеет характерные линии излучения на длинах волн 363,3 нм, 403,1 нм, 426,2 нм, 429,7 нм и 485,3 нм [20].
Находясь в 7 группе Периодической системы Д.И. Менделеева, технеций по химическим свойствам немного похож на марганец и довольно близок к рению. В соединениях проявляет девять целочисленных степеней окисления от −1 до +7 и еще 5 дробных (таких как 2,5 [3], 1,81, 1,67, 1,625, 1,5 [4]), характерных для кластерных соединений технеция (с обобществлённой системой атомов металл-металл, связанных, тем не менее, с другими лигандами. При взаимодействии с кислородом образует оксиды Tc2O7 и TcO2. С хлором, бромом и фтором — галогениды TcX6, TcX5, TcX4.,, которые в среде соответствующих галогеноводородных кислот образуют комплексные соединения вида K2Tc2X6, K3Tc2X8, K3Tc6X14 и др.[21]. C серой образует сульфиды TcS2 и [Tc3(μ3-S)(μ2-S2)3(S2)(3n −1)/n)]n, [5] тогда как Tc2S7 в чистом виде не существует. Технеций входит в состав координационных и элементоорганических соединений. Образует полиоксотехнетаты — новый подкласс неорганических соединений, относящийся к классу полиоксометаллатов[22], и имеющий состав (H7O3)4Tc20O68*4H2O [23].
В ряду напряжений технеций стоит правее водорода, между медью и рутением [6]. Он не реагирует с соляной, но легко растворяется в азотной кислоте, В таких кислотах, как серная или фосфорная, технеций растворяется только в присутствии окислителя, например - перекиси водорода.
Технеций получают из радиоактивных отходов химическим способом; для его выделения используются химические процессы со множеством трудоёмких операций, большим количеством реагентов и отходов. В России первый технеций был получен в работах Анны Федоровны Кузиной совместно с работниками ПО «Маяк»[24]. Основные тенденции обращения с технецием даны в [7] стр.26.
Кроме урана-235, технеций образуется при делении нуклидов 232Th, 233U, 238U, 239Pu.
Суммарное накопление во всех действующих на Земле реакторах за год составляет более 10 тонн[25].
Широко используется в ядерной медицине для исследований мозга, сердца, щитовидной железы, лёгких, печени, жёлчного пузыря, почек, костей скелета, крови, а также для диагностики опухолей в компьютерной томографии[27].
Пертехнетаты (соли технециевой кислоты HTcO4) обладают антикоррозионными свойствами, так как ион TcO4−, в отличие от ионов MnO4− и ReO4−, является самым эффективным ингибитором коррозии для железа и стали.
Технеций может быть использован, как ресурс для получения рутения, если после выделения из ОЯТ его подвергнуть ядерной трансмутации [Russian Journal of Inorganic Chemistry, Vol. 47, No. 5, 2002, pp. 637–642].[28]
Как элемент, практически отсутствующий на Земле, технеций не играет естественной биологической роли.
С химической точки зрения технеций и его соединения малотоксичны. Опасность технеция вызывается его радиотоксичностью.
Технеций при введении в организм распределяется по разному, в зависимости от химической формы, в которой он вводится. Возможна адресная доставка технеция в один конкретный орган при использовании специальных радиофармпрепаратов. Это является основой его широчайшего применения в радиодиагностике — ядерной медицине.
Простейшая форма технеция — пертехнетат — при введении попадает почти во все органы, но в основном задерживается в желудке и щитовидной железе. Поражения органов из-за его мягкого β-излучения с дозой до 0,000001 Р/(ч·мг) никогда не наблюдалось.
При работе с технецием используются вытяжные шкафы с защитой от его β-излучения или герметичные боксы.
↑К.Э. Герман. [200 тысяч лет тому вперёд. В чём уникальность технеция и почему он так важен для ядерной медицины и атомной энергетики? 200000 years ahead. What is unique about technetium and why is it so important for nuclear medicine and nuclear energy] (рус.) // Вестник РОСАТОМА : журнал. — 2019. — 10 июня (т. 5, № 5). — С. 26—39.
↑Jonge; Pauwels, E. K. (1996). “Technetium, the missing element”. European Journal of Nuclear Medicine. 23 (3): 336—44. DOI:10.1007/BF00837634. PMID8599967.
↑van der Krogt, P.Technetium (неопр.). Elentymolgy and Elements Multidict. Дата обращения: 5 мая 2009. Архивировано 23 января 2010 года.
↑Weeks, M. E. (1933). “The discovery of the elements. XX. Recently discovered elements”. Journal of Chemical Education. 10 (3): 161—170. Bibcode:1933JChEd..10..161W. DOI:10.1021/ed010p161.
↑Технеций // Энциклопедический словарь юного химика. 2-е изд. / Сост. В. А. Крицман, В. В. Станцо. — М.: Педагогика, 1990. — С. 241—242. — ISBN 5-7155-0292-6.
↑V. P. Tarasov, Yu. B. Muravlev, K. E. German & N. N. Popova.99Tc NMR of Supported Technetium Nanoparticles (англ.) // Doklady Physical Chemistry : статья. — 2001. — 15 March (vol. 377, no. 3). — P. 71—76. Архивировано 23 января 2022 года.
↑Трошкина И. Д., Озава М., Герман К. Э. Развитие химии технеция // глава в сборнике «Редкие элементы в ядерном топливном цикле» стр. 39-54. Москва, Издательство РХТУ им. Д. И. Менделеева
↑NuDat 2.8 (неопр.). National Nuclear Data Center. Дата обращения: 7 декабря 2020. Архивировано 27 ноября 2020 года.
↑И. А. Леенсон. Технеций: что нового. «Химия и жизнь — XXI век», 2008, № 12