Молочноки́слое броже́ние (уст. квасное брожение) — вид брожения, конечным продуктом при котором выступает молочная кислота. Существует два основных вида молочнокислого брожения: гомоферментативное, при котором молочная кислота составляет до 90 % продукта, и гетероферментативное, при котором на её долю приходится лишь половина. Молочнокислое брожение активно используется человеком для приготовления кисломолочных продуктов и других продуктов питания.
Как правило, молочнокислые бактерии сбраживают сахара. В зависимости от конечных продуктов молочнокислое брожение подразделяют на гомоферментативное и гетероферментативное[3].
Общая схема гомоферментативного молочнокислого брожения
При гомоферментативном молочнокислом брожении сахара сбраживаются через гликолиз, и около 90 % конечного продукта приходится на лактат (остальные 10 % составляют ацетат, ацетоин и этанол). Субстратом для гомоферментативного молочнокислого брожения служат лактоза, другие моно- и дисахариды, а также органические кислоты. Общее уравнение гомоферментативного брожения: глюкоза → 2 лактат + 2 АТФ[5].
При гетероферментативном молочнокислом брожении сахара сбраживаются через пентозофосфатный путь, и на долю молочной кислоты приходится лишь около половины конечного продукта. Помимо лактата, при гетероферментативном брожении образуются ацетат, этанол и углекислый газ. Основным субстратом для гетероферментативного молочнокислого брожения является мальтоза. Ацетил-КоА может преобразовываться в двух направлениях: либо окисляться до ацетата, давая ещё одну молекулу АТФ, либо восстанавливаться до этанола за счёт NADH + H+. У гетероферментативных бактерий нет ключевых ферментов гликолиза — альдолазы и триозофосфатизомеразы — из-за чего бактерии не могут окислять сахара с помощью гликолиза. У некоторых лактобактерийгидролиз мальтозы сопровождается ее фосфорилированием с образованием глюкозо-6-фосфата и галактозы. При этом энергетический выход брожения повышается[7].
К гетероферментативным молочнокислым бактериям относятся некоторые виды рода Lactobacillus (L. fermentum, L. brevis и другие), а также представители рода Leuconostoc[7].
Некоторые гомоферментативные бактерии, оказываясь в среде, содержащей пентозы, начинают вырабатывать каталазу и могут переходить на гетероферментативное брожение. Так, Lactobacillus plantarum, обитающая на растительных остатках, использует гликолиз для окисления гексоз, а пентозы окисляет по пентозофосфатному пути с образованием лактата и ацетата[8].
Ряд гетероферментативных бактерий очень чувствителен к окружающим условиям. Так, Leuconostoc mesenteroides, которая в качестве одного из продуктов образует этанол, при соприкосновении с кислородом производит значительное количество полисахаридов и из-за этого ослизняется[3].
Гетероферментативные молочнокислые бактерии рода Bifidobacterium преобладают в микробиоте желудочно-кишечного тракта грудных детей, и продукты осуществляемого ими брожения подавляют рост гнилостной микрофлоры. В настоящее время при дисбактериозе, вызванном, например, приёмом антибиотиков, назначают пробиотики, содержащие молочнокислые бактерии[9]. Кроме того, бактерии рода Lactobacillus, обитающие во влагалище, за счёт образования молочной кислоты предотвращают размножение патогенноймикрофлоры[10].
В условиях недостатка кислорода, когда аэробное окисление пирувата становится невозможным, в тканяхживотных пируват начинает превращаться в лактат под действием фермента лактатдегидрогеназы с затратой молекулы NADH + H+, то есть он подвергается молочнокислому брожению. Так как при гликолизе из одной молекулы глюкозы образуется две молекулы пирувата и две молекулы NADH + H+, которые потом тратятся на превращение двух молекул пирувата в две молекулы лактата, суммарного образования или расходования NADH + H+ в этой реакции не происходит. Превращение пирувата в лактат происходит при активной работе мышц или эритроцитах. Из-за образования лактата при активной физической работе pH в крови и мышцах снижается, что ограничивает длительность периода напряжённой физической активности. Образованный лактат может быть использован повторно: при восстановлении сил после интенсивной физической нагрузки по кровотоку он доставляется в печень, где снова превращается в глюкозу[11].
Поскольку молочная кислота является естественным консервантом, молочнокислое брожение используется при квашении овощей, засолкеогурцов, в заквасках для ржаных сортов хлеба и добавках для сырокопчёных колбас, а также для получения чистого лактата[13]. С помощью молочнокислого брожения осуществляют силосование, в том числе заготовку кормовой свёклы[14].
↑Боровик Т. Э., Ладодо К. С., Захарова И. Н., Рославцева Е. А., Скворцова В. А., Звонкова Н. Г., Лукоянова О. Л. Кисломолочные продукты в питании детей раннего возраста // Вопросы современной педиатрии. — 2014. — Т. 13, № 1. — С. 89—95.
Нетрусов А. И., Котова И. Б. Микробиология. — 4-е изд., перераб. и доп. — М.: Издательский центр «Академия», 2012. — 384 с. — ISBN 978-5-7695-7979-0.
Куранова Н. Г., Купатадзе Г. А. Микробиология. Часть 2. Метаболизм прокариот. — М., 2017. — 100 с. — ISBN 978-5-906879-11-0.
Шмид Р. Наглядная биотехнология и генетическая инженерия. — М.: БИНОМ. Лаборатория знаний, 2015. — 324 с. — ISBN 978-5-94774-767-6.
Нельсон Д., Кокс М. Основы биохимии Ленинджера. в 3-х т. — БИНОМ. Лаборатория знаний. — М., 2014. — Т. 2: Энергетика и метаболизм. — 636 с. — ISBN 978-5-94774-366-1.
Либрихт Анселм. Основы микробиологии - БИНОМ. Лаборатория знаний. - М., 2016. - T.3: О метаболизме. -645 с.