Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 октября 2021 года; проверки требуют 7 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 октября 2021 года; проверки требуют 7 правок.
Математическое ожидание
Математи́ческое ожида́ние — понятие в теории вероятностей, означающее среднее (взвешенное по вероятностям возможных значений) значение случайной величины[1]. В случае непрерывной случайной величины подразумевается взвешивание по плотности распределения (более строгие определения см. ниже). Математическое ожидание случайного вектора равно вектору, компоненты которого равны математическим ожиданиям компонентов случайного вектора.
Обозначается через [2] (например, от англ.Expected value или нем.Erwartungswert);
в русскоязычной литературе также встречается обозначение (возможно, от англ.Mean value или нем.Mittelwert, а возможно от «Математическое ожидание»). В статистике часто используют обозначение .
Для случайной величины, принимающей значения только 0 или 1 математическое ожидание равно p — вероятности «единицы». Математическое ожидание суммы таких случайных величин равно np, где n — количество таких случайных величин. При этом вероятности появления определенного кол-ва единиц рассчитываются по биномиальному распределению. Поэтому в литературе, скорее всего, легче найти запись, что мат. ожидание биномиального распределения равно np[3].
Некоторые случайные величины не имеют математического ожидания, например, случайные величины, имеющие распределение Коши.
На практике математическое ожидание обычно оценивается как среднее арифметическое наблюдаемых значений случайной величины (выборочное среднее, среднее по выборке). Доказано, что при соблюдении определенных слабых условий (в частности, если выборка является случайной, то есть наблюдения являются независимыми) выборочное среднее стремится к истинному значению математического ожидания случайной величины при стремлении объема выборки (количества наблюдений, испытаний, измерений) к бесконечности.
как значение первой производной в единице: . Если математическое ожидание бесконечно, то и мы будем писать
Теперь возьмём производящую функцию последовательности «хвостов» распределения
,
Эта производящая функция связана с определённой ранее функцией свойством: при . Из этого по теореме о среднем следует, что математическое ожидание равно просто значению этой функции в единице:
где — случайные величины с конечным математическим ожиданием, а — произвольные константы;
В частности, математическое ожидание суммы (разности) случайных величин равно сумме (соответственно — разности) их математических ожиданий.
Математическое ожидание сохраняет неравенства, то есть если почти наверняка, и — случайная величина с конечным математическим ожиданием, то математическое ожидание случайной величины также конечно, и более того
.
Математическое ожидание не зависит от поведения случайной величины на событии вероятности нуль, то есть если почти наверняка, то
.
Математическое ожидание произведения двух независимых или некоррелированных[5] случайных величин равно произведению их математических ожиданий
.
Неравенства, связанные с математическим ожиданием[править | править код]
Теорема Лебега о мажорируемой сходимости: пусть есть сходящаяся почти всюду последовательность случайных величин: . Пусть в дополнение существует интегрируемая случайная величина , такая что почти наверное. Тогда случайные величины интегрируемы и
.
Тождество Вальда: для независимых одинаково распределённыхслучайных величин, где является положительной целочисленной случайной величиной, независимой от , при условии, что и имеют конечное математическое ожидание, будет выполняться следующее равенство:
Математическое ожидание случайной величины равно значению первой производной её производящей функции моментов в точке 0:
↑В.Е.Гмурман.Часть вторая. Случайные величины. ->
Глава 4. Дискретные случайные величины. ->
Параграф 3. // [http://elenagavrile.narod.ru/ms/gmurman.pdf РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И
МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ]. — 1979. — С. 63. — 400 с.Архивная копия от 21 января 2022 на Wayback Machine
↑Пытьев Ю. П., Шишмарев И. А., Теория вероятностей, математическая статистика и элементы теории возможностей для физиков. — М.: Физический факультет МГУ, 2010.
Феллер В.Глава XI. Целочисленные величины. Производящие функции // Введение в теорию вероятностей и её приложения = An introduction to probability theory and its applicatons, Volume I second edition / Перевод с англ. Р. Л. Добрушина, А. А. Юшкевича, С. А. Молчанова Под ред. Е. Б. Дынкина с предисловием А. Н. Колмогорова. — 2-е изд. — М.: Мир, 1964. — С. 270—272.