Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 января 2021 года; проверки требуют 12 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 января 2021 года; проверки требуют 12 правок.
В классическом варианте коэффициенты при переменных, свободные члены и неизвестные считаются вещественными числами, но все методы и результаты сохраняются (либо естественным образом обобщаются) на случай любых полей, например, комплексных чисел.
Решение систем линейных алгебраических уравнений — одна из классических задач линейной алгебры, во многом определившая её объекты и методы. Кроме того, линейные алгебраические уравнения и методы их решения играют важную роль во многих прикладных направлениях, в том числе в линейном программировании, эконометрике.
Общий вид системы линейных алгебраических уравнений:
Здесь — количество уравнений, а — количество переменных, — неизвестные, которые надо определить, коэффициенты и свободные члены предполагаются известными. Индексы коэффициентов в системах линейных уравнений () формируются по следующему соглашению: первый индекс () обозначает номер уравнения, второй () — номер переменной, при которой стоит этот коэффициент[1].
Система называется однородной, если все её свободные члены равны нулю (), иначе — неоднородной.
Квадратная система линейных уравнений — система, у которой количество уравнений совпадает с числом неизвестных (). Система, у которой число неизвестных больше числа уравнений, является недоопределённой, такие системы линейных алгебраических уравнений также называются прямоугольными. Если уравнений больше, чем неизвестных, то система является переопределённой.
Решение системы линейных алгебраических уравнений — совокупность чисел , таких что их соответствующая подстановка вместо в систему обращает все её уравнения в тождества.
Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения. Решения считаются различными, если хотя бы одно из значений переменных не совпадает. Совместная система с единственным решением называется определённой, при наличии более одного решения — недоопределённой.
Система линейных алгебраических уравнений может быть представлена в матричной форме как:
или:
.
Здесь — это матрица системы, — столбец неизвестных, а — столбец свободных членов. Если к матрице приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.
Теорема Кронекера — Капелли устанавливает необходимое и достаточное условие совместности системы линейных алгебраических уравнений посредством свойств матричных представлений: система совместна тогда и только тогда, когда ранг её матрицы совпадает с рангом расширенной матрицы.
Системы линейных уравнений называются эквивалентными, если множество их решений совпадает, то есть любое решение одной системы одновременно является решением другой, и наоборот. Также считается, что системы, не имеющие решений, эквивалентны.
Систему, эквивалентную данной, можно получить, в частности, заменив одно из уравнений на это уравнение, умноженное на любое отличное от нуля число. Эквивалентную систему можно получить также, заменив одно из уравнений суммой этого уравнения с другим уравнением системы. В общем, замена уравнения системы на линейную комбинацию уравнений даёт систему, эквивалентную исходной.
Система линейных алгебраических уравнений эквивалентна системе , где — невырожденная матрица. В частности, если сама матрица — невырожденная, и для неё существует обратная матрица, то решение системы уравнений можно формально записать в виде .
Прямые методы дают алгоритм, по которому можно найти точное решение систем линейных алгебраических уравнений. Итерационные методы основаны на использовании повторяющегося процесса и позволяют получить решение в результате последовательных приближений.
Итерационные методы устанавливают процедуру уточнения определённого начального приближения к решению. При выполнении условий сходимости они позволяют достичь любой точности просто повторением итераций. Преимущество этих методов в том, что часто они позволяют достичь решения с заранее заданной точностью быстрее, а также позволяют решать большие системы уравнений. Суть этих методов состоит в том, чтобы найти неподвижную точку матричного уравнения
,
эквивалентного начальной системе линейных алгебраических уравнений. При итерации в правой части уравнения заменяется, например, в методе Якоби (метод простой итерации) приближение, найденное на предыдущем шаге:
.
Итерационные методы делятся на несколько типов, в зависимости от применяемого подхода:
Куксенко С. П., Газизов Т. Р. Итерационные методы решения системы линейных алгебраических уравнений с плотной матрицей. — Томск: Томский государственный университет, 2007. — 208 с. — ISBN 5-94621-226-5.
Форсайт Дж., Молер К. Численное решение систем линейных алгебраических уравнений. — Москва: Мир, 1969. — 166 с.