Пусть — множество и — множество отображений из в . Отображение из множества в множество называется инвариантом для , если для любых и выполняется тождество .
Концепция инварианта является одной из важнейших в математике, поскольку изучение инварианта непосредственно связано с задачами классификации объектов того или иного типа. По существу, целью всякой математической классификации является построение некоторой полной системы инвариантов (по возможности, наиболее простой), то есть такой системы, которая разделяет любые два неэквивалентных объекта из рассматриваемой совокупности[1].
Инварианты используются в различных областях математики, таких как геометрия, топология и алгебра. Открытие инвариантов является важным шагом в процессе классификации математических объектов.
Теория инвариантов занимается поиском инвариантных многочленов (или просто «инвариантов») и изучением образованной ими алгебры для случая линейных представлений алгебраических групп, а также действий алгебраических групп на алгебраических многообразиях.