Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 мая 2022 года; проверки требуют 10 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 мая 2022 года; проверки требуют 10 правок.
Антоцианы
Керацианин — рутинозил-3-цианидин, антоциан, содержащийся в костянках вишен (Cerasus).
Антоцианы (также антоцианины; от греч.ἄνθος — цветок и греч.κυανός — синий, лазоревый) — окрашенные растительные гликозиды, содержащие в качестве агликона антоцианидины — замещённые 2-фенилхромены, относящиеся к флавоноидам. В 1835 году немецкий фармацевт Людвиг Кламор Маркварт в своем трактате «Цвета цветов» впервые дал название антоциан химическому соединению, которое придает цветам синий цвет. Они находятся в растениях, обусловливая красную, фиолетовую и синюю окраски плодов и листьев.
Антоцианы принадлежат к родительскому классу молекул, называемых флавоноидами, синтезируемых фенилпропаноидным путём. Они встречаются во всех тканях высших растений, включая листья, стебли, корни, цветы и плоды. Антоцианы получают из антоцианидинов путём добавления сахаров[1]. Они не имеют запаха и умеренно вяжущие.
Несмотря на то, что антоцианы одобрены для окрашивания пищевых продуктов и напитков в Европейском союзе (Е163), они не одобрены для использования в качестве пищевых добавок (хотя и имеют Е-номер), поскольку они не были проверены на безопасность при использовании в качестве пищевых ингредиентов или добавок[2].
Антоцианы являются гликозидами, содержащими в качестве агликона-антоцианидина гидрокси- и метоксизамещённые соли флавилия (2-фенилхроменилия), у некоторых антоцианов гидроксилы ацетилированы. Углеводная часть связана с агликоном обычно в положении 3, у некоторых антоцианов — в положениях 3 и 5, при этом в роли углеводного остатка могут выступать как моносахариды (глюкоза, рамноза, галактоза), так и ди- и трисахариды.
Будучи пирилиевыми солями, антоцианы легко растворимы в воде и полярных растворителях, малорастворимы в спирте и нерастворимы в неполярных растворителях.
Строение антоцианов установлено в 1913 году немецким биохимиком Р. Вильштеттером, первый химический синтез антоцианов осуществлён в 1928 году английским химиком Р. Робинсоном.
Антоцианы и антоцианидины обычно выделяются из кислых экстрактов растительных тканей при умеренно невысоких значениях pH, в этом случае агликоновая антоцианиновая часть антоциана либо антоцианин существуют в форме флавилиевой соли, в которой электрон гетероциклического атома кислорода участвует в гетероароматической системе бензпирилиевого (хроменилиевого) цикла, который и является хромофором, обусловливающим окраску этих соединений — в группе флавоноидов они являются наиболее глубоко окрашенными соединениями с наибольшим сдвигом максимума поглощения в длинноволновую область.
На окраску антоцианидинов влияет число и природа заместителей: гидроксильные группы, несущие свободные электронные пары обуславливают батохромный сдвиг при увеличении их числа. Так, например, пеларгонидин, цианидин и дельфинидин, несущие в 2-фенильном кольце, соответственно, одну, две и три гидроксильные группы, окрашены в оранжевый, красный и пурпурный цвета. Гликозилирование, метилирование или ацилирование гидроксильных групп антоцианидинов приводит к уменьшению или исчезновению батохромного эффекта.
В силу высокой электрофильности хроменилиевого цикла структура и, соответственно, окраска антоцианов и антоцианидинов обуславливается их чувствительностью к pH: в кислой среде (pH < 3) антоцианы (и антоцианидины) существуют в виде пирилиевых солей, при повышении pH до ~4—5 происходит присоединение гидроксид-иона с образованием бесцветного псевдооснования, при дальнейшем повышении pH до ~6—7 происходит отщепление воды с образованием хиноидной формы, которая, в свою очередь, при pH ~7—8 отщепляет протон с образованием фенолята, и, наконец, при pH выше 8 фенолят хиноидной формы гидролизуется с разрывом хроменового цикла и образованием соответствующего халкона:
Зависимость структуры и цвета антоцианов от pH среды: 1. Красная пирилиевая соль; 2. Бесцветное псевдооснование; 3. Синяя хиноидная форма; 4. Пурпурный фенолят хиноидной формы; 5. Жёлтый халкон
Образование комплексов с катионами металлов также влияет на окраску, одновалентный катион К+ даёт пурпурные комплексы, двухвалентные Mg2+ и Ca2+ — синие, на цвет также может влиять адсорбция на полисахаридах. Антоцианы гидролизуются до антоцианидинов в 10 % соляной кислоте, сами антоцианидины устойчивы при низких значениях pH и разлагаются при высоких.
Антоцианы очень часто определяют цвет лепестков цветков, плодов и осенних листьев. Они обычно придают фиолетовую, синюю, розовую, коричневую, красную окраску. Эта окраска зависит от pH клеточного содержимого. Раствор антоцианов в кислой среде имеет красный цвет, в нейтральной — сине-фиолетовый, а в щелочной — жёлто-зелёный.[3] Окраска, обусловленная антоцианами, может меняться при созревании плодов, отцветании цветков — процессах, сопровождающихся изменением pH клеточного содержимого. Например, бутоны медуницы мягкой имеют розовый оттенок, а цветки — сине-фиолетовый цвет.
Многие антоцианы достаточно хорошо растворимы, например, при экстракции виноградного сока из кожуры плодов они переходят в красные вина (см. цвет бордо).
Синтезируются данные соединения в цитоплазме и депонируются в клеточные вакуоли при помощи глутатионового насоса. Антоцианы обнаружены в специальных везикулах — антоцианопластах, хлоропластах, а также в кристаллическом виде в плазме некоторых видов лука и клеточном соке плодов апельсина.
Общеизвестный факт активации биосинтеза антоцианов у растений в стрессовых условиях ещё не получил глубокого физиолого-биохимического обоснования. Возможно, что антоцианы не несут никакой функциональной нагрузки, а синтезируются как конечный продукт насыщенного флавоноидного пути, получившего вакуолярное ответвление с целью конечного депонирования ненужных растению фенольных соединений.
С другой стороны, антоциановая индукция, вызванная определёнными факторами окружающей среды, а также предсказуемость появления антоцианинов из года в год в периоды специфических этапов развития листа, их яркая выраженность в особых экологических нишах, возможно, способствуют адаптации растительных организмов к тем или иным стрессовым условиям.
В жгучих перцах также замечено несколько видов, у которых антоциан присутствует не только в плодах, но и в листьях. Причём, в данном случае, антоциан синтезируется тем больше, чем ярче солнечный свет, падающий на растение. К таким перцам можно отнести Black Pearl (Чёрная Жемчужина), Pimenta da Neyde и другие. Но в Чёрной Жемчужине созревший плод полностью лишается антоциана, и плод-ягода краснеет, а у Pimenta da Neyde плод-стручок на солнце всегда остаётся тёмным.
Антоцианы придают лиловый цвет клеткам лепестков цветов двудольных растений. Фото в микроскоп при небольшом увеличении.
Многие популярные книги неточно указывают на то, что цвет осенних листьев (включая красный цвет) — просто результат разрушения зелёного хлорофилла, который маскировал уже имевшиеся жёлтые, оранжевые и красные пигменты (ксантофилл, каротиноид и антоциан, соответственно). И если для каротиноидов и ксантофиллов это действительно так, то антоцианы не присутствуют в листьях до тех пор, пока в листьях не начнёт снижаться уровень хлорофиллов. Именно тогда растения начинают синтезировать антоцианы, вероятно для фотозащиты в процессе перемещения азота.
Антоцианы запрещены к использованию в качестве пищевых добавок (E163) в Европе[2], но разрешены в качестве пищевых добавок практически во всём остальном мире. Антоцианы используются в качестве натуральных красителей в пищевых продуктах и напитках. Изначально, они были разрешены для использования в Европейском союзе, пока в 2013 году Европейское агентство по безопасности продуктов питания (EFSA) не пришла к выводу, что антоцианы из различных фруктов и овощей недостаточно охарактеризованы исследованиями безопасности и токсикологии для одобрения их использования в качестве пищевых добавок[2]. Опираясь на безопасную историю использования экстрактов кожицы красного винограда и экстрактов чёрной смородины для окрашивания пищевых продуктов, произведённых в Европе, комиссия пришла к выводу, что эти источники экстрактов являются исключениями из правил и их безопасность достаточно доказана[2].
В США экстракты различных растений не перечислены среди одобренных пищевых красителей для продуктов питания; однако виноградный сок, кожица красного винограда и многие фруктовые и овощные соки, разрешённые для использования в качестве красителей, богаты природными антоцианами[4]. Источники антоцианов не включены в число одобренных красителей для лекарств или косметики. При этерификации жирными кислотами антоцианы можно использовать в качестве липофильного красителя для пищевых продуктов[5].
Антоцианы способствуют снижению воспалительных реакций и оксидативного стресса в кишечнике, при потреблении избыточного количества жиров и углеводов и улучшают барьерные функции кишечника[7].
Черника, содержащая большое количество антоцианов, используются для лечения и профилактики диабета[8]. Более высокое потребление антоцианов и фруктов, богатых антоцианами, было связано с более низким риском развития диабета 2 типа[9].
Более высокое общее потребление антоцианов в значительной степени связано со сниженным риском развития артериальной гипертензии. Величина снижения была наибольшей у участников ≤60 лет[10].
Регулярное употребление ягод клубники, клюквы и черники полезно для профилактики сердечно-сосудистых заболеваний[11].
Низкая биодоступность антоцианов, получаемых из пищи, ограничивает их полезные для здоровья свойства. Биодоступность антоцианов обычно составляет менее 1–2%, хотя сообщалось о биодоступности 5% при доставке в виде вина. Внутривенное введение антоцианов обеспечивает 100% биодоступность.[12]Микробиота кишечника может оказывать важное влияние на биодоступность антоцианов[13].