Электролит
Электроли́т (от электро… и греч. λυτός – разлагаемый, растворимый) — вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов. Примерами электролитов могут служить кислоты, соли, основания и некоторые кристаллы (например, иодид серебра, диоксид циркония)[1][2].
Электролиты являются проводниками второго рода. Их электропроводность обусловлена подвижностью положительно или отрицательно заряженных ионов[3].
Степень диссоциации
Процесс распада молекул в растворе или расплаве электролита на ионы называется электролитической диссоциацией. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации[4].
Одновременно в электролите протекают процессы ассоциации ионов в молекулы. При неизменных внешних условиях (температура, концентрация и др.) устанавливается динамическое равновесие между распадами и ассоциациями. Поэтому в электролитах диссоциирована определённая доля молекул вещества.
Классификация
Исходя из степени диссоциации все электролиты делятся на две группы:
- Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как HCl, HBr, HI, HNO3, H2SO4).
- Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты, такие как HF), основания p-, d- и f-элементов.
Между этими двумя группами чёткой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.
Использование термина
В естественных науках
Термин электролит широко используется в биологии и медицине. Чаще всего подразумевают водный раствор, содержащий те или иные ионы (например, «всасывание электролитов» в кишечнике).
В технике
Слово электролит широко используется в науке и технике, в разных отраслях оно может иметь различающийся смысл.
В электрохимии
Многокомпонентный раствор для электроосаждения металлов, а также травления и др. (технический термин, например электролит золочения).
В источниках тока
Электролиты являются важной частью химических источников тока: гальванических элементов и аккумуляторов[5]. Электролит участвует в химических реакциях окисления и восстановления с электродами, благодаря чему возникает ЭДС. В источниках тока электролит может находиться в жидком состоянии (обычно это водный раствор) или загущённым до состояния геля[6].
Электролитический конденсатор
В электролитических конденсаторах в качестве одной из обкладок используется электролит. В качестве второй обкладки — металлическая фольга (алюминий) или пористый, спечённый из металлических порошков блок (тантал, ниобий). Диэлектриком в таких конденсаторах служит слой оксида самого металла, формируемый химическими методами на поверхности металлической обкладки.
Конденсаторы данного типа, в отличие от других типов, обладают несколькими отличительными особенностями:
- высокая объёмная и весовая удельная ёмкость;
- требование к полярности подключения в цепях постоянного напряжения. Несоблюдение полярности вызывает бурное вскипание электролита, приводящее к механическому разрушению корпуса конденсатора (взрыву);
- значительные утечки и зависимость электрической ёмкости от температуры;
- ограниченный сверху диапазон рабочих частот (типовые значения сотни кГц — десятки МГц в зависимости от номинальной ёмкости и технологии).
Активности в электролитах
Химический потенциал для отдельного i-го иона имеет вид: где — активность i-го иона в растворе.
Для электролита в целом имеем:
где — активность электролита; — стехиометрические числа.
Таким образом, имеем:
Усредненная активность иона равна:
Для одно-одновалентного электролита и то есть является средним геометрическим активностей отдельных ионов.
Для добавления растворов электролитов принято пользоваться моляльной (m) концентрацией (для разбавленных водных растворов m (в моль/кг) численно близка к с (молярной концентрации, в моль/л)). Значит, где — коэффициент активности i-го иона.
Примечания
- ↑ J E Enderby, G W Neilson. The structure of electrolyte solutions // Reports on Progress in Physics. — 1981-06-01. — Т. 44, вып. 6. — С. 593–653. — ISSN 1361-6633 0034-4885, 1361-6633. — doi:10.1088/0034-4885/44/6/001.
- ↑ Petrovic, Slobodan. Battery technology crash course : a concise introduction. — Springer, 29 October 2020. — ISBN 978-3-030-57269-3.
- ↑ Антропов Л. И. Теоретическая электрохимия. — М.,: Высшая школа, 1984. — 519 с.
- ↑ Степень диссоциации (α) — отношение числа молекул, диссоциировавших на ионы, к общему числу молекул в растворе электролита.
- ↑ ГОСТ 15596-82 Источники тока химические. Термины и определения
- ↑ Jiangshui Luo, Annemette H. Jensen, Neil R. Brooks, Jeroen Sniekers, Martin Knipper, David Aili, Qingfeng Li, Bram Vanroy, Michael Wübbenhorst, Feng Yan, Luc Van Meervelt, Zhigang Shao, Jianhua Fang, Zheng-Hong Luo, Dirk E. De Vos, Koen Binnemans, Jan Fransaer. 1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells (англ.) // Energy & Environmental Science. — 2015. — Vol. 8, iss. 4. — P. 1276–1291. — ISSN 1754-5706 1754-5692, 1754-5706. — doi:10.1039/C4EE02280G. Архивировано 31 июля 2025 года.
Литература
- Кистяковский В. А.,. Электролит // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
Ссылки
- Электролиты — статья из Большой советской энциклопедии.