Формула Пика

Формула Пи́ка (или теорема Пи́ка) — классический результат комбинаторной геометрии и геометрии чисел, даёт выражение для площади многоугольника с целочисленными вершинами.

Названа в честь Георга Пика, доказавшего её в 1899 году.

Формулировка

Площадь многоугольника с целочисленными вершинами[1] равна , где В — количество целочисленных точек внутри многоугольника, а Г — количество целочисленных точек на границе многоугольника.

Следствия

  • Площадь треугольника с вершинами в узлах и не содержащего узлов ни внутри, ни на сторонах (кроме вершин), равна 1/2.
    • Этот факт даёт геометрическое доказательство формулы для разности подходящих дробей цепной дроби.

Вариации и обобщения

  • Если все грани целочисленного многогранника центрально симметричны (в частности если многогранник является зонэдром) то его объём может быть вычислен по формуле
где суммирование ведётся по всем целочисленным точкам и телесный угол при ; если лежит внутри , то считается что .[2]
  • Аналогичное утверждение верно и в -мерном евклидовом пространстве
где обозначает площадь единичной сферы в .

Примечания

Литература