Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 ноября 2022 года; проверки требуют 2 правки.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 ноября 2022 года; проверки требуют 2 правки.
Резухови́дка (резу́шка) Та́ля (лат.Arabidopsis thaliana) — растение; вид рода Резуховидка (Arabidopsis) семейства Капустные (Brassicaceae). Это небольшое цветковое растение; его исходный ареал включает Европу, Азию и север Африки, а в наше время резуховидка Таля распространилась по всем континентам, кроме Антарктиды.
Однолетник или двулетник. Цветёт в мае–июне.
Резуховидка Таля может пройти полный цикл развития за шесть недель и относится к типичным эфемерам. Цветоносный побег заканчивает рост в течение трёх недель. Цветки, как правило, самоопыляются.
Стебель большей частью один, 4,5—70 см высотой, тонкий, прямой, простой или ветвистый, вместе с листьями покрытый простыми или 2—3-раздельными волосками; листья продолговато-ланцетные или продолговатые, с удалёнными друг от друга зубчиками, прикорневые собраны в розетку и сужены в короткий черешок, стеблевые в небольшом числе, сидячие, более мелкие.
Кисть при цветках сжатая, потом сильно удлинённая и очень рыхлая, 8—40-цветковая; чашелистики 1,5—2 мм длиной, продолговатые, тупые; лепестки белые, 3—4 мм длиной, продолговатые; боковые медовые желёзки полушаровидные, довольно крупные; завязь с 48—68 семяпочками; цветоножки при плодах тонкие, оттопыренные, 4—15 мм длиной.
Стручки вверх стоячие, голые, часто изогнутые, 9—18 мм, редко 3 см длиной, 0,75 мм шириной; столбик тонкий, короткий; створки с 1 тонкой жилкой; перегородка прозрачная, блестящая, без тяжа; семена красновато-бурые, яйцевидные, однорядные, 0,5:0,4:0,3 мм.
Двойные мутанты цветков Arabidopsis (впервые описаны в 1873 году)
Первое описание мутантной формы Arabidopsis было сделано в 1873 году Александром Брауном, который описал фенотип двойных цветков (мутантный ген подобен гену Agamous, клонированному в 1990 году)[3]. Однако лишь в 1943 году Фридрих Лайбах (описавший кариотип растения в 1907 году) предложил использовать арабидопсис в качестве модельного организма[4]. Его студентка Эрна Рейнхольц в 1945 году опубликовала результаты своих исследований, описав первую коллекцию мутантов Arabidopsis, полученных при помощи рентгеновского облучения.
В 1950-х и 1960-х годах Джон Лангридж и Джордж Редей сделали большой вклад в становление арабидопсиса как удобного растения для лабораторных экспериментов. Сообщество исследования арабидопсиса Arabidopsis Information Service (AIS) было создано в 1964 году. Первая International Arabidopsis Conference была проведена в 1965 году в Геттингене, Германия.
Арабидопсис широко используется в качестве модельного организма для изучения генетики и биологии развития растений[5][6]. Считается, что арабидопсис сыграл для генетики растений такую же роль, как домовая мышь и дрозофила фруктовая для генетики животных.
3 января 2019 года семена резуховидки Таля были отправлены в герметичном контейнере на обратную сторону Луны в китайском аппарате «Чанъэ-4». Исследователи планировали проверить, возможно ли создать в космическом аппарате замкнутую экосистему, в которой личинки шелкопряда будут вырабатывать углекислый газ, а растения (картофель и резуховидка Таля) — преобразовывать его в кислород с помощью фотосинтеза.[10] Эксперимент удался: отдельные семена проросли[11], однако все организмы погибли в первую лунную ночь, после посадки аппарата, так как его биологический контейнер не был рассчитан на ночные условия[12]. В 2021 году семена резуховидки Таля проросли в реголите, увлажнённом 12,5%-й средой Мурасиге-Скугга, хотя далее её рост происходил тяжелее, чем в земной почве[13][14][15].
Малый размер генома (около 157 млнпар нуклеотидов) делает Arabidopsis thaliana удобным объектом для картирования генов и секвенирования[16]. Геном арабидопсиса в 2000 году стал первым секвенированным геномом растения[17]. Среди генов растения: Agamous, Flowering Locus C, GAI, HOTHEAD, Leafy, Stp4, Superman и др.
Наиболее полная версия генома Arabidopsis thaliana поддерживается The Arabidopsis Information Resource (TAIR)[18]. Много работ было проведено для определения функций около 27 000 генов и 35 000 белков, которые закодированы в геноме[19].
Для доставки ДНК в растение используют Rhizobium radiobacter. Распространённый протокол, называемый floral-dip (в переводе с англ. — «цветочное окунание»), предполагает обмакивание цветков в раствор, содержащий Agrobacterium, ДНК и детергент[20].
Модель ABC развития цветка была разработана при изучении арабидопсиса
Арабидопсис активно используется для изучения развития цветка. Развивающийся цветок имеет четыре органа — чашелистики, лепестки, тычинки, плодолистики, которые образуют пестики. Органы цветка располагаются кругами: четыре чашелистика во внешнем круге, шесть лепестков, шесть тычинок и центральные плодолистики.
Наблюдения за гомеозисными мутациями привели к формулировке ABC-модели развития цветка[21]. В соответствии с данной моделью, гены, отвечающие за формирование цветка, делят на три группы: гены класса A (чашелистики и лепестки), гены класса B (лепестки и тычинки), гены класса C (тычинки и плодолистики). Эти гены кодируют факторы транскрипции, которые вызывают специализацию тканей растения в течение развития.
8-дневный корень арабидопсиса. Коричневый цвет — эпидермис, красный — осевой цилиндр, синий — эндодерма, зелёный — перицикл. Из исследования экспрессии белков тонопласта (TIP-аквапоринов), авт. Gattolin et al., 2009[22].
Двойное оплодотворение у арабидопсиса: схема и микрофотографии. а: схема развития женского гаметофита. Гаплоидная функциональная мегаспора (FM) развивается из диплоидной мегаспоровой материнской клетки (MMC) в ходе двух мейотических делений (1). Три синцитиальных митотических деления (2) превращают FM в восьмиядерную клетку. В результате последующей миграции ядер, разбития на отдельные клетки, слияния ядер и дифференциации (3) возникает зародышевый мешок с восемью ядрами. Он содержит яйцеклетку (EC), две клетки-синергиды (SC) у пыльцевхода, три клетки-антиподы (AP) у противоположного полюса, и одну вакуолизированную гомо-диплоидную центральную клетку (CC) посередине. После этого антиподы разрушаются. Разрушение одной синергиды предшествует врастанию пыльцевой трубки (PT), и две клетки-спермии (SP) независимо друг от друга оплодотворяют яйцеклетку и центральную клетку, приводя к развитию соответственно диплоидного эмбриона (EM) и триплоидного эндосперма (EN). SUS — суспензор. VN — вегетативное ядро. На кадрах b-f тот же процесс представлен в виде фотографий (ii — внутренние оболочки, oi — внешние). Как синхронные, так и асинхронные свободные митотические деления ядер (кадр e, стрелки) приводят к появлению свободного ядерного эндосперма (FNE), показанного на кадре f. Врезка в кадре e — изображение развивающейся зиготы (ZY). Из исследования Johnston et al., 2007[23]
↑Об условности указания класса двудольных в качестве вышестоящего таксона для описываемой в данной статье группы растений см. раздел «Системы APG» статьи «Двудольные».
↑Meinke D. W. et al. Arabidopsis thaliana: A Model Plant for Genome Analysis (англ.) // Science : journal. — 1998. — Vol. 282, no. 5389. — P. 662—682. — doi:10.1126/science.282.5389.662.
↑Coelho S.M., Peters A.F., Charrier B., et al. Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms (англ.) // Gene (журнал) : journal. — Elsevier, 2007. — Vol. 406, no. 1—2. — P. 152—170. — doi:10.1016/j.gene.2007.07.025. — PMID 17870254.
↑Длительная экспедиция на «Салюте-7» // Наука и человечество, 1984 : Международный ежегодник. — М.: Знание, 1984. — С. 320—330.
↑Bennett, M. D., Leitch, I. J., Price, H. J., & Johnston, J. S. Comparisons with Caenorhabditis (100 Mb) and Drosophila (175 Mb) Using Flow Cytometry Show Genome Size in Arabidopsis to be 157 Mb and thus 25% Larger than the Arabidopsis Genome Initiative Estimate of 125 Mb (англ.) // Annals of Botany : journal. — 2003. — Vol. 91. — P. 547—557. — doi:10.1093/aob/mcg057. — PMID 12646499.
↑The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana (англ.) // Nature : journal. — 2000. — Vol. 408. — P. 796—815. — doi:10.1038/35048692. — PMID 11130711.
↑Zhang X., Henriques R., Lin S.S., Niu Q.W., Chua N.H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method (англ.) // Nat Protoc : journal. — 2006. — Vol. 1, no. 2. — P. 641—646. — doi:10.1038/nprot.2006.97. — PMID 17406292.
↑Coen, Henrico S.; Elliot M. Meyerowitz. The war of the whorls: Genetic interactions controlling flower development (англ.) // Nature : journal. — 1991. — Vol. 353. — P. 31—37. — doi:10.1038/353031a0. — PMID 1715520.
Губанов И. А. 631. Arabidopsis thaliana (L.) Heynh. — Резуховидка Таля // Иллюстрированный определитель растений Средней России : в 3 т. / И. А. Губанов, К. В. Киселёва, В. С. Новиков, В. Н. Тихомиров. — М. : Товарищество науч. изд. КМК : Ин-т технол. исслед., 2003. — Т. 2 : Покрытосеменные (двудольные: раздельнолепестные). — С. 257. — 666 с. — 3000 экз. — ISBN 9-87317-128-9.
Резуховидка Таля: информация о таксоне в проекте «Плантариум» (определителе растений и иллюстрированном атласе видов). (Дата обращения: 13 февраля 2012)