Мни́мая едини́ца — комплексное число, квадрат которого равен . В математике, физике мнимая единица обозначается латинской буквой (в электротехнике: )[1][2].
Введение мнимой единицы позволяет расширить полевещественных чисел до поля комплексных чисел. Одной из причин введения мнимой единицы является то, что не каждое полиномиальное уравнение с вещественными коэффициентами имеет решения в поле вещественных чисел. Так, уравнение не имеет вещественных корней. Однако оказывается, что любое полиномиальное уравнение с комплексными коэффициентами имеет комплексное решение — об этом говорит основная теорема алгебры. Существуют и другие области, в которых комплексные числа приносят большую пользу.
Исторически мнимая единица сначала была введена для решения вещественного кубического уравнения: при наличии трёх вещественных корней для получения двух из них формула Кардано требовала извлечения квадратных корней из отрицательных чисел.
Вплоть до конца XIX века наряду с символом использовалось обозначение однако современные источники предписывают во избежание ошибок под знаком радикала помещать только неотрицательные выражения[3][4]. Более того, помимо мнимой единицы, существует ещё одно комплексное число, квадрат которого равен — число в паре с которым мнимая единица составляет следующие свойства:
числа i и −i являются одновременно противоположными и обратными: последнее верно потому, что произведение этих чисел равно 1;
i и −iкомплексно сопряжены, так что их сумма (ноль) и произведение (единица) вещественны одновременно (свойства сопряжённых чисел).
Термин «мнимая единица» может употребляться не только для комплексных чисел, но и для их обобщений[⇨].
потому что |i!|2 = i! i! = i! (i)! = Γ(1 + i) Γ(1 − i), что по рекуррентному соотношению гамма-функции можно переписать как i Γ(i) Γ(1 − i), а затем по формуле дополнения Эйлера — как iπsin πi = πsinh π.
Корни кубические из мнимой единицы (вершины треугольника)
В поле комплексных чисел корень n-й степени имеет n значений. На комплексной плоскости корни из мнимой единицы находятся в вершинах правильного n-угольника, вписанного в окружность с единичным радиусом.
В частности, и
Также корни из мнимой единицы могут быть представлены в показательном виде:
Гаусс утверждал также, что если бы величины 1, −1 и √−1 назывались соответственно не положительной, отрицательной и мнимой единицей, а прямой, обратной и побочной, то у людей не создавалось бы впечатления, что с этими числами связана какая-то мрачная тайна. По словам Гаусса, геометрическое представление дает истинную метафизику мнимых чисел в новом свете. Именно Гаусс ввел термин «комплексные числа» (в противоположность «мнимым числам» Декарта) и использовал для обозначения √−1 символ i.Морис Клайн, «Математика. Утрата определённости». Глава VII. Нелогичное развитие: серьёзные трудности на пороге XIX в.
↑Мнимая единица // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. — С. 708.
↑Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — С. 49. — 591 с.
↑Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — 2-е изд. — М.: Наука, 1970. — С. 33. — 720 с.