Гала́ктика Андроме́ды (Тума́нность Андроме́ды, M 31, NGC 224, PGC 2557) — спиральная галактика, наблюдаемая в созвездии Андромеды. Её диаметр составляет 47 килопарсеков, что больше, чем у нашей Галактики, и она содержит в несколько раз больше звёзд, чем Млечный Путь. Расстояние от нашей Галактики до неё составляет около 800 килопарсеков, что делает её ближайшей из крупных галактик, а также крупнейшей галактикой Местной группы. Её масса приблизительно равна массе Млечного Пути[3][4].
Диаметр галактики, измеренный по изофоте 25m на квадратную секунду дуги в фотометрической полосе B, составляет 47 килопарсеков[3], что больше, чем диаметр Млечного Пути[8]. В пределах 30 килопарсеков от центра галактики заключена масса в 3⋅1011M⊙, из которой на звёзды приходится около 1011M⊙[9]. В более далёких частях галактики звёзды и газ уже практически не наблюдаются, но общая масса в области с радиусом в 100 килопарсеков от центра, по разным оценкам, находится в диапазоне 0,8—1,5⋅1012M⊙[10][11], в том числе из-за гало тёмной материи. Всего же галактика содержит порядка триллиона звёзд, а её абсолютная звёздная величина в полосе V составляет −21,2m[12][6]. Таким образом, галактика Андромеды вдвое больше по размеру, чем Млечный Путь, и содержит в 2,5—5 раз больше звёзд. При этом массы двух галактик как минимум равны, а скорее всего, масса Млечного Пути даже больше за счёт гало, хотя до недавнего времени считалось, что галактика Андромеды значительно массивнее Млечного Пути, так как не было точной информации о массе гало M 31[4][7][13].
Профиль поверхностной яркости галактики M 31 вдоль её большой оси. Точки — наблюдательные данные, линия — модель; вклад балджа и диска показан, соответственно, красной пунктирно-точечной и синей пунктирной линиями
В диске галактики содержится 56 % звёздной массы галактики[18], он обеспечивает 70 % светимости галактики[19]. Диск имеет искривлённую форму: северо-восточная часть диска отклонена к северу, а юго-восточная — к югу относительно его большой оси[20].
Распределение яркости в диске экспоненциальное, а характерный радиус диска вблизи оптического диапазона зависит от длины волны, уменьшаясь для более коротких волн. Так, характерный радиус диска в полосе U составляет 7,5 килопарсеков, в полосе V — 5,7 килопарсека, а в полосе K — только 4,4 килопарсека. Таким образом, окраина диска имеет более голубой цвет и более молодое звёздное население, чем центральные области[21][22].
В диске галактики наблюдается множество сегментов спиральных рукавов: во внутренних областях галактики они выделяются в основном за счёт пыли, а во внешних — за счёт сверхгигантов и областей H II[23][24]. Скорее всего, формирование спиральной структуры в галактике Андромеды не объясняется теорией волн плотности[15]. Кроме спиральной структуры, в диске галактики наблюдается кольцо, окружающее центр на расстоянии приблизительно в 10 килопарсеков от него, — так называемый молодой диск (англ.young disc): он отличается большим количеством областей H II и OB-ассоциаций. Молодой диск содержит 1 % звёздной массы звёзд и при моделировании иногда рассматривается как отдельная от диска составляющая галактики[18][25].
Светимость сферической подсистемы составляет 30 % светимости галактики[19]. Балдж и гало содержат, соответственно, 30 % и 13 % звёздной массы галактики[18].
Балдж имеет эффективный радиус в 3,8 килопарсека, видимое отношение осей составляет 0,6 ― причиной такой сплюснутости является его вращение. Гало галактики Андромеды также сплюснуто с отношением осей 0,55[26][27]. Балдж M 31 содержит как классическую составляющую, так и ящикообразную[28].
Галактика Андромеды наклонена к картинной плоскости достаточно сильно, чтобы её бар сам по себе был трудно заметен, но слишком слабо, чтобы балдж имел отчётливую ящикообразную форму. Тем не менее, о наличии в галактике бара, расположенного практически вдоль луча зрения, свидетельствуют некоторые косвенные данные, например, кинематические свойства атомарного водорода или ориентация внутренних изофот галактики[29].
В центре галактики Андромеды наблюдается ядро. Его видимая звёздная величина в полосе V составляет 12,6m, что соответствует абсолютной звёздной величине −12,0m. Ядро является двойным: в середине наблюдаются две области, P1 и P2, разделённые расстоянием в 1,8 парсека, где концентрируются звёзды. P1 более яркая, при этом в центре галактики находится не она, а более тусклая P2. Более тусклая область имеет эффективный радиус в 0,2 парсека и, возможно, содержит сверхмассивную чёрную дыру массой 5⋅107M⊙[30].
Двойственность ядра можно объяснить либо тем, что галактика Андромеды в прошлом поглотила шаровое скопление или небольшую галактику, ядро которой и наблюдается, либо тем, что ядро частично затенено пылью, что может создавать иллюзию двойственности ядра[5][7]. Само ядро имеет очень высокую светимость, в 60 раз превышающую светимость среднего шарового скопления в галактике. Также ядро, подобно ядру нашей Галактики, является радиоисточником, но его светимость в этом диапазоне в 30 раз слабее, чем у источника в центре Млечного Пути[25].
В галактике наблюдается множество структур, возникших в результате приливных взаимодействий. Особенно они заметны во внешнем гало ― на расстояниях более 50 килопарсеков от центра галактики, некоторые из них простираются до расстояний более 100 килопарсеков от центра M 31. Эти структуры удаётся отслеживать по звёздам вершины ветви красных гигантов[31].
Например, Гигантский звёздный поток (англ.Giant stellar stream) ― наиболее заметная из приливных структур M 31 ― образовалась в результате прохождения карликового спутника в нескольких килопарсеках от центра галактики Андромеды. Спутник имел массу, составляющую, по разным оценкам, 1―5⋅109M⊙, двигался по практически радиальной орбите, а прохождение случилось 1―2 миллиарда лет назад[31].
В центральных частях галактики доминируют звёзды классического балджа, у большинства из которых возраст составляет 11—13 миллиардов лет и наблюдается повышенная металличность ― в центре она равна 0,35[комм. 1] и понижается с удалением от центра. У этих звёзд также наблюдается повышенное содержание альфа-элементов относительно железа. У звёзд бара содержание альфа-элементов относительно железа повышено, но их металличность близка к солнечной. В диске звёздное население более молодое, в некоторых областях его средний возраст составляет 3―4 миллиарда лет. Таким образом, во внутренних областях M 31 сначала за сравнительно короткое время образовался классический балдж и первичный диск, в котором сформировался бар, сейчас наблюдаемый как ящикообразная компонента балджа. После этого звездообразование в балдже продолжалось, что увеличивало металличность центральных областей, а диск сформировался позже[33][34].
В гало также наблюдается градиент металличности звёздного населения: она понижается ко внешним областям. На расстоянии в 20 килопарсеков от центра медианная металличность составляет −0,5, а на расстояниях более 90 килопарсеков она понижается до −1,4[35]. Внутри приливных структур (см. выше[⇨]) также может наблюдаться определённое распределение металличности: например, в центре Гигантского звёздного потока металличность составляет от −0,7 до −0,5, а на окраине падает до −1,4[31]. Звёзды и шаровые скопления в гало распределены по-разному: для звёзд их пространственная плотность зависит от расстояния как , а для скоплений — как , то есть система шаровых скоплений является более протяжённой, чем звёздная. Кроме того, у звёзд внутренней части гало выше металличность, чем у скоплений, — это может объясняться тем, что скопления сформировались раньше, чем большинство звёзд в гало[36].
Нынешний темп звездообразования в галактике Андромеды составляет 0,35—0,4 M⊙ в год[38], что соответствует лишь 20—30 % от такового в Млечном Пути, и звёзды в галактике Андромеды в среднем более старые[13]. В полосе g соотношение масса — светимость в единицах M⊙/L⊙ составляет порядка 5,3 для балджа, 5,2 для диска, 6,2 для гало и 1,2 для молодого диска[18].
Галактика Андромеды имеет выраженную систему шаровых звёздных скоплений: их известно около 400, что в 2—3 раза больше, чем в Млечном Пути, а по теоретическим оценкам их в галактике примерно 450. Среди них — скопление Майалл II, самое яркое скопление в Местной группе, которое имеет массу в 7—15 миллионов масс Солнца (что вдвое больше, чем у Омеги Центавра) и, возможно, является ядром разрушенной карликовой галактики[7][6][25][39]. В среднем шаровые звёздные скопления в галактике Андромеды имеют бо́льшую металличность, чем в Млечном Пути[40].
В галактике Андромеды известны скопления с большим количеством звёзд, по возрастам занимающие три диапазона: первый — от 100 до 500 миллионов лет, второй — около 5 миллиардов лет, третий — 10—12 миллиардов лет, при этом некоторые из таких скоплений относятся к диску галактики. В отличие от галактики Андромеды, в Млечном Пути скопления с большим количеством звёзд — шаровые скопления — практически одинаково старые, с возрастом 10—12 миллиардов лет, а молодые отсутствуют[41][42].
Вероятно, наличие молодых скоплений в галактике Андромеды объясняется поглощением ею неправильных галактик в прошлом. Такие скопления малого возраста могут рассматриваться и как шаровые, и как отдельный тип, называемый населёнными голубыми скоплениями (англ.populous blue clusters), представители которого считаются предшественниками типичных шаровых скоплений[41][42].
Кроме того, в галактике Андромеды имеются звёздные скопления, по характеристикам промежуточные между шаровыми звёздными скоплениями и карликовыми сфероидальными галактиками, аналогов которым в Млечном Пути не обнаружено. Хотя их светимости и цвета такие же, как и у обычных шаровых скоплений, они отличаются очень большими радиусами — порядка 30 парсеков[43].
В галактике Андромеды нет выраженной границы между скоплениями гало и скоплениями балджа, в отличие от Млечного Пути. В нашей Галактике скопления балджа имеют металличность выше −1,0[комм. 1], а скопления гало — ниже, а скоплений с промежуточными значениями металличности наблюдается мало, в то время как в галактике Андромеды распределение скоплений по металличностям более равномерное. Кроме того, в M 31 некоторые скопления, расположенные в гало достаточно далеко от центра, имеют относительно высокие металличности — до −0,5[44].
Молодые скопления небольшой массы, похожие на рассеянные скопления Млечного Пути, в галактике Андромеды также присутствуют — по оценкам, в M 31 таких объектов должно быть около 10 тысяч[42]. В галактике известно около 200 OB-ассоциаций: они сосредоточены в спиральных рукавах и в молодом диске (см. выше[⇨]), но даже там их концентрация относительно мала в сравнении с нашей Галактикой[45][46].
В галактике Андромеды пыли достаточно, чтобы она наблюдалась в виде пылевых полос, частично затемняющих свет с северо-западной стороны от балджа. Пылевые полосы хорошо заметны из-за большого угла наклона плоскости галактики к картинной плоскости. Всего в галактике известно более 700 отдельных пылевых облаков[50].
Пыль в галактике M 31 влияет на поглощение и покраснение света. Помимо того избытка цвета, которое создаёт пыль в нашей Галактике, покраснение в цвете B−V за счёт пыли в галактике Андромеды в некоторых областях достигает 0,45m. Зависимость величины поглощения от длины волны отличается от таковой для пыли Млечного Пути. Пыль также вносит вклад в поляризацию излучения M 31, и зависимость степени поляризации от длины волны тоже отличается от наблюдаемой в нашей Галактике. Из-за некоторого нагрева пыль сама излучает в инфракрасном диапазоне[50]. Отношение количества пыли к количеству газа постепенно уменьшается от центра галактики к периферии[49].
Атомарный водород в M 31 сосредоточен в диске, особенно в спиральных рукавах и в кольце радиусом в 10 килопарсеков (см. выше[⇨]), а искривление диска лучше всего заметно именно по структуре атомарного водорода. В местах, где происходит активное звездообразование, плотность атомарного водорода снижена[51].
В галактике известно более 3900 областей H II[52], а также 26 остатков сверхновых и ещё 20 кандидатов в такие объекты[53]. Кроме них, известно более 4200 планетарных туманностей[54], а всего в галактике, по оценкам, их должно быть около 8 тысяч[55]. Остатки сверхновых отличают от областей H II по наличию излучения нетепловой природы в радиодиапазоне. Хотя области H II в галактике сами по себе довольно типичны, в их совокупности мало ярких объектов. Металличность областей H II понижается от центра к окраине галактики[56].
В галактике также наблюдается излучение отдельных молекул ― например, CO, которые располагаются в молекулярных облаках. В спиральных рукавах излучение приходит из гигантских молекулярных облаков с массами порядка 106M⊙, а между рукавами излучают менее крупные облака с массами порядка 104M⊙[57].
Одна из переменных звёзд — M31-RV — проявилась довольно необычным образом: она резко увеличила свою яркость в 1988 году, достигла абсолютной звёздной величины −10m и стала одной из самых ярких звёзд галактики, а затем потускнела и перестала быть видимой. При этом по наблюдаемым свойствам эта звезда сильно отличалась от типичных новых звёзд и была похожа на переменную V838 Единорога, вспыхнувшую в нашей Галактике. Одно из возможных объяснений такого поведения ― слияние двух звёзд[62][63].
В галактике Андромеды вспыхивает в среднем около 50 новых звёзд в год, всего в галактике зарегистрировано не менее 800 таких объектов[64]. При этом отношение частоты вспышек новых звёзд к светимости галактики довольно низко по сравнению с другими галактиками, что может быть связано с низким темпом звездообразования в M 31[65][66]. У одной из повторных новых звёзд ― M31N 2008-12a ― вспышки наблюдались уже как минимум 8 раз[67].
За всю историю наблюдений в галактике была зарегистрирована единственная сверхновая — S Андромеды, наблюдавшаяся в 1885 году[7]. Её видимая звёздная величина составила 6,7m в максимуме блеска, и современниками она была принята за новую звезду, а не сверхновую (см. ниже[⇨]). Количество остатков сверхновых, а значит, и частота их вспышек в галактике невелики для её светимости из-за пониженного темпа звездообразования[68][69].
В галактике есть кандидат в экзопланеты — PA-99-N2b, на существование которого может указывать событие микролинзирования, наблюдавшееся в 1999 году. Однако после объявления об открытии оно было поставлено под сомнение[70], и на данный момент планета считается неподтверждённой[71].
Как и многие галактики, M 31 излучает в радиодиапазоне, но мощность этого излучения невелика, поэтому галактику Андромеды не относят к радиогалактикам. Например, на частоте 325 МГц наблюдается 405 источников[72], среди них, например, остатки сверхновых. Радиоизлучение приходит в основном из центра галактики и из кольца с радиусом в 10 килопарсеков, а области, где мощность радиоизлучения повышена, соответствуют областям более активного звездообразования. Радиоизлучение M 31 поляризовано: галактика имеет магнитное поле, поэтому электроны, движущиеся в нём с релятивистскими скоростями, создают поляризованное синхротронное излучение[73][74].
В галактике Андромеды известно как минимум 1897 источников рентгеновского излучения, некоторые из которых проявляют переменность. Среди этих источников — рентгеновские двойные и остатки сверхновых, также мягкое рентгеновское излучение создают белые карлики с высокой температурой[75][76]. Некоторые источники наблюдаются в шаровых скоплениях галактики — яркость скоплений M 31 в рентгеновском диапазоне выше, чем шаровых скоплений Млечного Пути[77]. Ещё одно отличие источников в галактике Андромеды от источников в Млечном Пути — сосредоточение в центре: ярких источников в балдже M 31 гораздо больше, чем в балдже Млечного Пути, а ещё более сильным различие становится при сравнении внутренних частей балджей[78].
Кривая вращения M 31. Пунктирными линиями указан вклад различных частей галактики в общую кривую вращения, обозначенную сплошной линией
Лучевая скорость M 31 относительно Земли равна −310 км/с, а относительно центра Млечного Пути −120 км/с[48], то есть галактики сближаются. Тангенциальная скорость галактики Андромеды составляет 57 км/с, так что галактики столкнутся в будущем (см. ниже[⇨])[7][17].
Кривая вращения галактики имеет максимум в области 1—15 килопарсеков от центра, на этих расстояниях скорость вращения галактики составляет 240—250 км/с[18]. С точки зрения наблюдателей на Земле вращение галактики происходит против часовой стрелки[17].
Поскольку галактика Андромеды и Млечный Путь сближаются со скоростью около 120 км/с, а тангенциальная скорость галактики Андромеды при этом достаточно мала, галактики в будущем столкнутся. Это произойдёт через 4 миллиарда лет, после чего на процесс слияния уйдёт ещё 2 миллиарда лет, а в результате слияния образуется эллиптическая галактика. При слиянии галактик столкновения отдельных звёзд всё равно будут маловероятны из-за низкой концентрации звёзд, но, возможно, Солнечная система будет выброшена на далёкое расстояние от центра получившейся галактики. В этом столкновении будет участвовать галактика Треугольника, и возможно, Млечный Путь столкнётся с ней раньше, чем с галактикой Андромеды[5][6][79].
Приливное взаимодействие между галактикой и спутниками приводит к тому, что с некоторыми из спутников связаны звёздные потоки и другие приливные структуры (см. выше[⇨])[31][82][83]. Кроме того, M 32 прошла через диск галактики Андромеды 200 миллионов лет назад или раньше, что привело к деформации спиральных рукавов и появлению кольца в галактике[84], а между этими двумя галактиками наблюдается «мост» из вещества[58].
Зарисовка туманности, сделанная Шарлем Мессье в 1807 году
Фотография, сделанная Исааком Робертсом в 1899 году
При хороших условиях наблюдения галактика Андромеды видна невооружённым глазом как туманность и, скорее всего, неоднократно наблюдалась в древности. Однако первое сохранившееся упоминание о ней датируется лишь 964 (либо 965[85]) годом нашей эры и содержится в «Книге неподвижных звёзд», составленной Ас-Суфи, где она описана как «маленькое облако»[7][86][87].
Из европейских источников, упоминающих туманность, известна голландская карта звёздного неба, которая датируется 1500 годом. Первым, кто наблюдал её с помощью телескопа, был Симон Марий в 1612 году. Туманность обнаружил также Джованни Баттиста Годиерна и, не зная о предыдущих наблюдениях, в 1654 году заявил о её открытии. В 1661 году галактику наблюдал Исмаэль Буйо и отметил при этом, что её открыл анонимный астроном в начале XVI века; тем не менее, Эдмунд Галлей считал первооткрывателем именно Буйо и указал это в своей работе 1716 года, посвящённой туманностям. Шарль Мессье внёс туманность в свой каталог в 1764 году под 31-м номером. В качестве первооткрывателя он указал Симона Мария, хотя тот не был первооткрывателем и не заявлял об открытии. Позже Мессье внёс в каталог и два спутника галактики — M 32 и M 110[7][86][87].
Уильям Гершель был первым, кто стал систематически исследовать туманности, в том числе и галактику Андромеды. Он считал, что M 31 и другие туманности рассеивают свет звёзд, из-за чего и выглядят туманными объектами, — это предположение оказалось верным для многих туманностей, но не для галактики Андромеды. Кроме того, Гершель ошибочно полагал, что за периоды в несколько лет внешний вид туманности меняется. Эта идея основывалась на том, что во времена Гершеля фотографии не существовало, и астрономы были вынуждены полагаться на зарисовки небесных тел, которые различались в зависимости от наблюдателя[88]. В 1785 году Гершель ошибочно оценил расстояние до галактики как 2000 расстояний до Сириуса, то есть 17 тысяч световых лет, но верно предположил, что туманность Андромеды похожа на Млечный Путь[7][58].
В 1847 году Джордж Бонд впервые обнаружил пылевые полосы в галактике[89]. В 1864 году Уильям Хаггинс заметил, что спектры туманностей делятся на непрерывные, которые встречаются также у звёзд, и эмиссионные, которые наблюдаются у газопылевых туманностей. Хаггинс обнаружил, что спектр M 31 непрерывен[7].
В 1885 году в галактике вспыхнула сверхновая — S Андромеды, первая зарегистрированная сверхновая вне Млечного Пути и пока что единственная в галактике Андромеды (см. выше[⇨])[7]. Эта сверхновая была принята за новую звезду, и эта ошибка утвердила мнение, что M 31 находится в нашей Галактике[90].
В 1887 году Айзек Робертс сделал первую в истории фотографию M 31, на которой были обнаружены некоторые детали структуры галактики[7]. Робертс заметил кольцеобразные структуры и сделал ошибочный вывод, что он наблюдает туманность, где образуется планетная система. В 1899 году он сделал больше фотографий галактики и понял, что структуры, принятые им за кольца, на самом деле являются спиральными рукавами[91].
В 1888 году Джон Дрейер опубликовал Новый общий каталог, содержащий 7840 туманностей, звёздных скоплений и других объектов. Галактика Андромеды вошла в него как NGC 224. Кроме самой галактики, в каталог вошло находящееся в ней звёздное скопление NGC 206. Уже известные компаньоны M 32 и M 110 вошли в каталог как NGC 221 и NGC 205 соответственно; ещё два спутника получили обозначения NGC 147 и NGC 185[7][86][92].
В 1912 году Весто Слайфер измерил лучевую скорость M 31 и выяснил, что она приближается к Земле со скоростью 300 км/с, что оказалось наибольшим значением из всех измеренных до этого. Это стало свидетельством того, что туманность находится вне Млечного Пути[7]. Слайфер также обнаружил вращение галактики: на угловом расстоянии в 20 минут дуги от центра лучевая скорость отличалась на 100 км/с[93].
До 1920-х годов данных о расстоянии до галактики практически не было, а различные попытки измерения часто приводили к неопределённым или совершенно неверным результатам. Например, Карл Болин в 1907 году обнаружил у M 31 параллакс в 0,17 секунды дуги, что привело к измеренному расстоянию всего в 6 парсеков[94]. Напротив, величина параллакса, которую измерил Адриан ван Маанен в 1918 году, была меньше величины погрешности измерения. Другие методы также приводили к подобным результатам[95].
В 1922 году Эрнст Эпик предположил, что сплюснутость центральных частей галактики вызвана их вращением, и, зная саму скорость вращения, оценил расстояние до галактики в 450 килопарсеков. В 1923 году Кнут Лундмарк по видимому блеску новых звёзд, обнаруженных в галактике, получил расстояние немногим более 1 мегапарсека. По порядку величины эти результаты сходятся с общепринятым значением[96].
В 1923 году Эдвин Хаббл обнаружил в галактике Андромеды две цефеиды — переменные звёзды, для которых была известна зависимость между периодом и светимостью. Благодаря этому открытию он позже определил, что расстояние до M 31 значительно превышает размеры Млечного Пути. Тем самым туманность Андромеды стала одним из первых астрономических объектов, для которого было доказано местонахождение вне нашей Галактики[97][98][99]. Впоследствии число переменных звёзд, известных Хабблу, увеличилось до 50, и в 1929 году он опубликовал работу, посвящённую галактике Андромеды. Оценка расстояния по цефеидам, сделанная Хабблом, составила 275 килопарсеков ― она оказалась сильно занижена, поскольку в то время не было известно, что цефеиды делятся на два типа с разными зависимостями между периодом и светимостью[7]. Хаббл измерил массу галактики и некоторые другие её характеристики. Оценка массы также оказалась сильно заниженной и составила 3,5⋅109M⊙, но, несмотря на ошибочность результатов, Хаббл смог показать, что M 31 ― галактика, во многом сравнимая с нашей[100].
После того как была опубликована работа Хаббла, важный вклад в изучение M 31 внёс Вальтер Бааде. До этого Хабблу удавалось различить отдельные звёзды только на периферии галактики, а Бааде в 1944 году смог пронаблюдать отдельные красные гиганты в центральной части галактики. Он обнаружил, что такие же красные гиганты наблюдаются в спутниках M 31 и в шаровых скоплениях Млечного Пути. Впоследствии Бааде сделал вывод, что в галактиках присутствует два звёздных населения: население I и население II. В 1952 году, также благодаря наблюдениям M 31, Бааде выяснил, что цефеиды населения I и населения II имеют различную зависимость между периодом и светимостью. При равных периодах цефеиды населения I в среднем в четыре раза ярче, чем населения II, поэтому в результате этого открытия оценки расстояния до галактик увеличились в два раза[комм. 2][101].
В дальнейшем были сделаны различные открытия. Например, в 1958 году Жерар Анри де Вокулёр изучил профиль яркости галактики и впервые разделил в нём вклад балджа и диска. В 1964 году Сидни ван ден Берг обнаружил OB-ассоциации в галактике, а в том же году Бааде и Хэлтон Арп опубликовали каталог областей H II. Первые планетарные туманности в галактике также открыл Бааде, но в больших количествах их стали открывать в 1970-х годах. В 1989 году был открыт остаток сверхновой S Андромеды, а в 1991 году с помощью телескопа Хаббл выяснилось, что ядро галактики является двойным[58][102].
В XXI веке галактика Андромеды становилась объектом различных исследований. Среди них, например, The Panchromatic Hubble Andromeda Treasury (PHAT) ― многополосное фотометрическое исследование части диска и центральной области галактики с помощью телескопа Хаббл. Его цель ― открытие звёздных скоплений, определение возрастов и металличностей отдельных звёзд и истории звездообразования в галактике. Другой пример ― The Pan-Andromeda Archaeological Survey (PAndAS) ― фотометрическое исследование внешних областей галактики, её гало и приливных структур в нём, а также спутников и удалённых звёздных скоплений[103]. Кроме того, с помощью данных, полученных в 2018 году на космическом телескопе Gaia, была изучена динамика самой галактики и большого числа звёзд в ней[17].
Галактика Андромеды является наиболее изученной из внешних галактик: в частности, она представляет интерес тем, что, в отличие от Млечного Пути, она наблюдается со стороны и все её особенности хорошо видны, а не скрыты межзвёздной пылью[7].
Сравнение угловых размеров Луны и галактики Андромеды (изображение смонтировано)
Галактика Андромеды наблюдается в одноимённом созвездии. Она имеет видимую звёздную величину +3,44m[14], что делает её не только видимой невооружённым глазом, но и самой яркой галактикой северного полушария небесной сферы[4]. Оценка её угловых размеров зависит от критериев и условий наблюдения, но в среднем размеры считают равными 3° × 1°, а значит, угловой диаметр галактики Андромеды в 6 раз больше углового диаметра Луны[7]. Галактика видима во всём северном полушарии, а в южном — на широтах севернее −40°[6], а лучший месяц для наблюдения — ноябрь[104]. Все эти свойства делают галактику достаточно популярным объектом для наблюдения[105].
Иногда эту галактику рассматривают как самый удалённый объект, видимый невооружённым глазом, хотя опытные наблюдатели могут разглядеть более удалённую галактику Треугольника[5].
Несмотря на высокий видимый блеск, поверхностная яркость галактики из-за её больших размеров невысока. Условия видимости сильно зависят от уровня светового загрязнения, хотя и в меньшей степени, чем для других галактик. При некотором световом загрязнении всё ещё видна самая яркая центральная часть галактики, при использовании бинокля или небольшого телескопа можно заметить самые яркие спутники — M 32 и M 110, но структура остаётся неразличимой, и галактика видна как туманное пятно в форме овала[106].
В телескоп с диаметром объектива 150 мм уже удаётся заметить структуру галактики — например, пылевые полосы, а также отдельные объекты: NGC 206 и некоторые шаровые скопления. Использование ещё более крупных инструментов, диаметром 350 мм, позволяет различить множество деталей: выделяется звездоподобное ядро, видны пылевые полосы в деталях. Можно заметить множество шаровых и рассеянных скоплений, а также отдельные яркие звёзды, например, AF Андромеды. Кроме того, становятся заметны галактики, находящиеся за M 31 на луче зрения: Маркарян 957 и 5Zw 29. Для наблюдения ближайших спутников M 31 — Андромеды I, II и III — необходим телескоп с диаметром объектива 500 мм[107]. При фотографировании с длительной выдержкой детали на изображении могут быть видны даже без использования телескопа[108].
В массовой культуре галактика Андромеды используется главным образом как локация в различных научно-фантастических произведениях. В литературных произведениях, например, роман Ивана Ефремова «Туманность Андромеды» (1955—1956 годы)[109], в котором галактика Андромеды — первая из галактик, с цивилизациями которой удается установить контакт. Среди кинофильмов — сериал A for Andromeda (1961 год), в котором сюжет основывается на том, что учёные приняли радиосообщение, отправленное из галактики Андромеды, а также сериал Star Trek, в одной из серий которого из галактики прибывают разумные существа[5]. Галактика присутствует и в компьютерных играх, например, в Mass Effect: Andromeda действие происходит в этой галактике[110].
↑ 12Металличность соответствует доле элементов тяжелее гелия, равной солнечной[32].
↑Поскольку калибровка шкалы расстояний до этого производилась по цефеидам населения II, наблюдаемым в шаровых скоплениях, а во внешних галактиках наблюдались цефеиды населения I, это приводило к недооценке расстояний до галактик, в том числе и M 31, в два раза[101].
Mould J.The Bulge of M31 (англ.) // Publications of the Astronomical Society of Australia. — Cambridge University Press, 2013. — Т. 30. — С. 8. — doi:10.1017/pas.2013.004.
Draine B. T., Aniano G., Krause O., Groves B. et al. [httpselibraryrudownloadelibrary3572407721772897 Andromeda's Dust] (англ.) // The Astrophysical Journal. — The American Astronomical Society, 2014. — Т. 780, вып. 2. — С. 18. — doi:10.1088/0004-637X/780/2/172.