Оператор градиента преобразует холм (слева), если смотреть на него сверху, в поле векторов (справа). Видно, что векторы направлены «в горку» и чем они длиннее, тем круче наклон
Градие́нт (от лат.gradiens — «шагающий, растущий») — вектор, своим направлением указывающий направление наискорейшего роста некоторой скалярной величины (значение которой меняется от одной точки пространства к другой, образуя скалярное поле).
Градиент поля обозначается: . По величине (модулю) градиент равен скорости роста величины в направлении вектора[1][2]. Например, если взять в качестве высоту поверхности земли над уровнем моря, то её градиент в каждой точке поверхности будет показывать «направление самого крутого подъёма», а своей величиной характеризовать крутизну склона.
Пространство, на котором определена функция и её градиент, может быть, вообще говоря, как обычным трёхмерным пространством, так и пространством любой другой размерности.
Термин впервые появился в метеорологии для исследования изменений температуры и давления атмосферы, а в математику был введён Максвеллом в 1873 году; обозначение тоже предложил Максвелл. Наряду со стандартным обозначением часто используется компактная запись с использованием оператора набла:
Градиент 2D функции отображен на графике в виде синих стрелок
Пусть температура в комнате задана с помощью скалярного поляT таким образом, что в каждой точке, заданной координатами (x, y, z) температура равняется T(x, y, z) (предположим, что температура не изменяется с течением времени). В каждой точке комнаты градиент функции T будет показывать направление, в котором температура возрастает быстрее всего. Величина градиента определяет, насколько быстро температура возрастает в данном направлении.
Для случая трёхмерного пространства градиентом дифференцируемой в некоторой области
скалярной функции координат , , называется векторная функция с компонентами
Размерность вектора градиента определяется, таким образом, размерностью пространства (или многообразия), на котором задано скалярное поле, о градиенте которого идёт речь.
Оператором градиента называется оператор, действие которого на скалярную функцию (поле) даёт её градиент. Этот оператор иногда коротко называют просто «градиентом».
Смысл градиента любой скалярной функции в том, что его скалярное произведение с бесконечно малым вектором перемещения даёт полный дифференциал этой функции при соответствующем изменении координат в пространстве, на котором определена , то есть линейную (в случае общего положения она же главная) часть изменения при смещении на . Применяя одну и ту же букву для обозначения функции от вектора и соответствующей функции от его координат, можно написать:
Стоит здесь заметить, что поскольку формула полного дифференциала не зависит от вида координат , то есть от природы параметров x вообще, то полученный дифференциал является инвариантом, то есть скаляром, при любых преобразованиях координат, а поскольку — это вектор, то градиент, вычисленный обычным образом, оказывается ковариантным вектором, то есть вектором, представленным в дуальном базисе, какой только и может дать скаляр при простом суммировании произведений координат обычного (контравариантного), то есть вектором, записанным в обычном базисе. Таким образом, выражение (вообще говоря — для произвольных криволинейных координат) может быть вполне правильно и инвариантно записано как:
или, опуская по правилу Эйнштейна знак суммы,
(в ортонормированном базисе мы можем писать все индексы нижними, как мы и делали выше).
Однако градиент оказывается настоящим ковариантным вектором в любых криволинейных координатах.
Используя интегральную теорему
,
градиент можно выразить в интегральной форме:
здесь — замкнутая поверхность охватывающая объём — нормальный элемент этой поверхности.
Нетрудно показать, что градиент функции в точке перпендикулярен её линии уровня, проходящей через эту точку. Модуль градиента показывает максимальную скорость изменения функции в окрестности , то есть частоту линий уровня. Например, линии уровня высоты изображаются на топографических картах, при этом модуль градиента показывает крутизну спуска или подъёма в данной точке.
Понятие градиента находит применение не только в физике, но и в смежных и даже сравнительно далёких от физики науках (иногда это применение носит количественный, а иногда и просто качественный характер).
Например, градиент концентрации — нарастание или уменьшение по какому-либо направлению концентрации растворённого вещества, градиент температуры — увеличение или уменьшение по какому-то направлению температуры среды и т. д.
Градиент таких величин может быть вызван различными причинами, например, механическим препятствием, действием электромагнитных, гравитационных или других полей или различием в растворяющей способности граничащих фаз.
Таким образом, для вычисления производной скалярной функции векторного аргумента по любому направлению достаточно знать
градиент функции, то есть вектор, компоненты которого являются её частными производными.
Градиент в ортогональных криволинейных координатах[править | править код]
Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. Методы и приложения: уч. пособие для физико-математических специальностей университетов. — М.: Наука, 1986. — 759 с.
Кочин Н. Е. Векторное исчисление и начала тензорного исчисления. — 9-е изд. — М. : Наука, 1965.
Купцов Л. П.Градиент // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1977. — Т. 1. — Стб. 1080. — 1152 с.
Рашєвский П. К. Риманова геометрия и тензорный анализ. — 3-е изд. — М. : Наука, 1967.