Зарядное устройство «Duracell» для зарядки аккумуляторов типоразмеров AA и AAA (видны пружинные прижимы для них) и аккумуляторных батарей типа «Крона». Во время зарядки горят красные светодиодные индикаторы
Электри́ческий аккумуля́тор — вторичный химический источник тока многоразового действия, который может быть вновь заряжен после разряда[1]. Для заряда аккумулятора электрический ток пропускается в направлении, обратном направлению тока при разряде[2].
Используется для циклического накопления энергии (заряд-разряд) и автономного электропитания различных электротехнических устройств и оборудования, а также для обеспечения резервных источников энергии в медицине, производстве, транспорте и в других сферах.
Наибольшее распространение получили свинцовые и щелочные (железно-никелевые и кадмий-никелевые) аккумуляторы, также используются цинк-серебряные, цинк-воздушные и марганцевые[3].
Термин «аккумулятор» используется для обозначения отдельного элемента: например, аккумулятор, аккумуляторная банка, аккумуляторная ячейка. Но в разговорной речи на бытовом уровне может также применяться в отношении нескольких отдельных элементов, соединённых последовательно (для увеличения напряжения) или параллельно (для увеличения силы тока и ёмкости) друг с другом, то есть для обозначения аккумуляторной батареи. Для параллельного соединения рекомендуется использовать аккумуляторные батареи одинаковой ёмкости и одинаковой модели. Однако, возможно использование разных моделей и даже разных емкостей, но при этом зарядные токи будут распределяться неравномерно, что может привести к сокращению срока службы АКБ. Соединяя аккумуляторы последовательно, получают батарею той же емкости, что и емкость одного из аккумуляторов, входящих в батарею, при условии, что емкости равны. При этом напряжение батареи будет равно сумме напряжений каждого из составляющих батарею аккумуляторов.
Первый прообраз аккумулятора, который, в отличие от батареи Алессандро Вольты, можно было многократно заряжать, был создан в 1803 году Иоганном Вильгельмом Риттером. Его аккумуляторная батарея представляла собой столб из пятидесяти медных кружочков, между которыми было проложено влажное сукно. После пропускания через данное устройство тока от вольтова столба оно само начинало вести себя как источник электричества[4].
Принцип действия аккумулятора основан на обратимости химической реакции. В первичном элементе используется самопроизвольная химическая реакция. Вторичный элемент в процессе заряда функционирует как электролитическая ячейка (электролизер). В электролизере электрическая энергия вызывает желаемую химическую реакцию.[5]
Работоспособность аккумулятора может быть восстановлена путём заряда, то есть пропусканием электрического тока в направлении, обратном направлению тока при разряде. Два и более аккумулятора для повышения напряжения, тока, мощности или надежности могут быть гальванически соединены в аккумуляторную батарею[6].
Щелочной аккумулятор — аккумулятор, получивший своё название из-за электролита, который в нём используется. В большинстве случаев это водный раствор КОН (едкий калий) или NaOH (едкий натрий). Данный вид аккумулятора имеет ряд преимуществ перед другими типами, Но также имеет недостатки. Самими распространёнными видами щелочных аккумуляторов являются никель-кадмиевые и никель-металогидридные (также называют никель-железными)
Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пропитанными электролитом пористыми сепараторами. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который внедряется (интеркалируется) в кристаллическую решетку других материалов (например, в графит, оксиды и соли металлов) с образованием химической связи (например: в графит с образованием LiC6, оксиды (LiMO2) и соли (LiMRON) металла).
Алюминий-ионный аккумулятор состоит из металлического алюминиевого анода, катода из графита в виде пены и жидкого ионного невоспламеняющегося электролита. Батарея работает по принципу электрохимического осаждения: происходит растворение алюминия на аноде, далее в среде жидкого электролита анионы хлоралюмината интеркалируют в графит. Количество возможных перезарядок батареи — более 7,5 тыс. циклов без потери мощности[7][8].
1 Внутреннее сопротивление аккумуляторов зависит от величины миллиампер-часов (мАч), проводки и количества элементов. Контур защиты литий-ионных батарей добавляет около 100 mΩ.
2 Типоразмер элемента 18650. Размер элемента и дизайн определяет внутреннее сопротивление.
3 Жизненный цикл у батарей, проходящих регулярное техническое обслуживание.
4 Жизненный цикл зависит от величины разряда. Меньшая величина разряда повышает срок службы.
5 Самая большая скорость саморазряда — сразу после заряда. NiCd-аккумулятор теряет 10 % заряда в течение первых 24 часов, затем скорость потери заряда снижается до 10 % за каждые 30 дней. Высокая температура увеличивает саморазряд.
6 Защитный контур, как правило, потребляет 3 % от запасенной энергии в месяц.
7 Чаще используется традиционное напряжение 1,25, 1,2 В.
8 Низкое внутреннее сопротивление уменьшает падение напряжения под нагрузкой и литий-ионные аккумуляторы часто имеют маркировку с большим значением, чем 3,6 В/элемент. Элементы с маркировкой 3,7 В и 3,8 В полностью совместимы с 3,6 В.
9 Способен выдерживать большой импульс тока нагрузки, но нужно время для восстановления.
10 Не заряжайте регулярно литий-ионные аккумуляторы при температуре ниже нуля.
11 Техническое обслуживание, такое как балансировка или подзарядка, для предотвращения сульфатации.
12 Для большинства типов литий-ионных систем отсечка происходит, если напряжение меньше, чем 2,20 В и больше, чем 4,30 В, другие значения напряжения применяются для литий-феррофосфатных аккумуляторов.[9]
За ёмкость аккумулятора чаще всего принимают количество электричества, равное 1 Кл, при силе тока 1 А в течение 1 с (при переводе времени в часы получаем 1 А*ч=3600 Кл). Однако принимают, а не измеряют. Существует распространенное заблуждение, что ёмкость аккумулятора измеряется в А*ч, это не совсем так, так как в 1 А*с=1 Кл или 1 А*ч=3600 Кл измеряется количество электричества или электрический заряд; по формуле Q= I*t, где Q -количество электричества или электрический заряд, I — сила тока, t — время протекания электрического тока. Например, обозначение «12 В на 55 А*ч» означает, что аккумулятор выдаёт количество электричества 198 кКл (килокулон) по какому-либо контуру, при токе разряда 55 А за 1 ч (3600 с) до порогового напряжения 10,8 В. Расчёт показывает, что при токе разряда в 255 А аккумулятор разрядится за 12,9 минуты. Как видно, 55 А*ч — это не ёмкость (электрическая ёмкость измеряется в Фарадах, 1 Ф= 1 Кл/В). Поэтому на аккумуляторе написано количество электричества Q, которое он выдаёт при определённом токе разряда и определённом времени его прохождения.[источник не указан 2827 дней]
Саморазряд — это потеря аккумулятором заряда после полной зарядки при отсутствии нагрузки. Саморазряд проявляется по-разному у разных типов аккумуляторов, но всегда максимален в первые часы после заряда, а после — замедляется.
Для Ni-Cd аккумуляторов считают допустимым не более 10 % саморазряда за первые 24 часа после проведения зарядки. Для Ni-MH саморазряд чуть меньше. У Li-ion он крайне мал и значительно себя проявляет только в течение нескольких месяцев после зарядки.
В свинцово-кислотных герметичных аккумуляторах саморазряд составляет около 40 % за 1 год хранения при 20 °С, 15 % — при 5 °С. Если температуры хранения более высокие, то саморазряд возрастает: батареи при 40 °С теряют 40 % ёмкости всего за 4-5 месяцев.
Следует беречь аккумуляторы от огня и воды, чрезмерного нагревания и охлаждения, резких перепадов температур.
Не следует использовать аккумуляторы при температурах выше +50 °С и ниже −25 °С. При эксплуатации аккумулятора в условиях «холодной зимы» рекомендуется его снимать и хранить в тёплом помещении. Нарушение температурного режима может привести к сокращению срока службы или потере работоспособности.
Электрические и эксплуатационные характеристики аккумулятора зависят от материала электродов и состава электролита. Сейчас наиболее распространены следующие аккумуляторы:
Банк питания с цифровой индикацией состояния зарядки
Внешний аккумулятор (аккумуляторная батарея) (англ.power bank) — устройство для многократной подзарядки мобильного устройства (телефона, смартфона, планшетного компьютера) при отсутствии источника переменного тока (электросети).
Причиной появления этих устройств стало то, что при активном использовании современных смартфонов и планшетов заряда их аккумуляторов хватает на сравнительно короткое время — полдня или день. Для их зарядки в полевых условиях и были разработаны портативные аккумуляторы[11][12]. Типичная масса таких устройств — 200—800 граммов, ёмкость от нескольких тысяч мА*ч до 10-20 А*ч[13]. С их помощью можно зарядить телефон 2-5 раз. Чаще всего они предоставляют для подключения порт USB. Некоторые из них имеют разъёмы или переходники для популярных разъёмов мобильных телефонов. Внешние аккумуляторы больших ёмкостей могут иметь переходники для зарядки ноутбуков. Иногда на внешних аккумуляторах имеется индикатор заряда или встроенный светодиодныйфонарик.
В большинстве случаев возможность систематического использования аккумуляторов есть только в портативных устройствах радиосвязи[каких?] и иной цифровой технике, где используются литий-ионные аккумуляторы и система контроля заряда-разряда встроена в устройство.
В бюджетном сегменте «простые» никель-металл-гидридные и никель-кадмиевые аккумуляторы используются в качестве бюджетной замены щелочных элементов питания (батареек).
В качестве источника тока для бюджетного аккумуляторного электроинструмента используются никель-кадмиевые аккумуляторы.
По мере исчерпания химической энергии напряжение и ток падают, аккумулятор перестаёт действовать. Зарядить аккумулятор (батарею аккумуляторов) можно от любого источника постоянного тока с бо́льшим напряжением при ограничении тока. Наиболее распространённым считается зарядный ток (в амперах), пропорциональный 1/10 условной номинальной ёмкости аккумулятора (в ампер⋅часах).
Многие типы аккумуляторов имеют различные ограничения, которые необходимо учитывать при зарядке и последующей эксплуатации, например, NiMH-аккумуляторы чувствительны к перезаряду и низкой температуре, литий-ионные — к переразряду, повышенному напряжению, низкой или высокой температуре. NiCd- и NiMH-аккумуляторы имеют так называемый эффект памяти, заключающийся в снижении ёмкости в случае, когда зарядка осуществляется при не полностью разряженном аккумуляторе. Также эти типы аккумуляторов обладают заметным саморазрядом, то есть они постепенно теряют заряд, не будучи подключенными к нагрузке. Для борьбы с этим эффектом может применяться капельная подзарядка.
Самый длительный и безопасный метод заряда. Подходит для большинства типов аккумуляторов.
Быстрый заряд
Заряд постоянным током, пропорциональным 1/3 Q в течение примерно 3—5 часов.
Первые смартфоны с поддержкой подобной технологии вышли в 2013 году. Тогда производители увеличивали напряжение блока питания, чтобы добиться заметных результатов — скорость вырастала на 30-40 % по сравнению со стандартной (медленной) зарядкой.
Ускоренный, или «дельта-V» заряд
Заряд с начальным током заряда, пропорциональным величине условной номинальной ёмкости аккумулятора, при котором постоянно измеряется напряжение аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда — примерно час-полтора. Возможен разогрев аккумулятора и даже его разрушение.
Технология от OPPO — SuperVOOC — позволяет зарядить смартфон почти на 30 % всего за пять минут.[16]
Реверсивный заряд
Выполняется чередованием длинных импульсов заряда с короткими импульсами разряда. Реверсивный метод наиболее полезен для заряда NiCd- и NiMH-аккумуляторов, для которых характерен т. н. «эффект памяти».