Электрическая ёмкость

Электри́ческая ёмкость — характеристика проводника, мера его способности аккумулировать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы (конденсатора), представленного в виде двухполюсника.

В Международной системе единиц (СИ) ёмкость измеряется в фарадах, общепринятое обозначение ёмкости: .

Ёмкость рассчитывается как отношение величины электрического заряда к разности потенциалов между проводником и бесконечностью или между проводниками[1]

,

где  — заряд,  — потенциал проводника,  — потенциал другого проводника или потенциал на бесконечности (как правило, принимаемый за нуль).

Ёмкость зависит от геометрии и формы проводников и электрических свойств окружающей среды (её диэлектрической проницаемости).

Что важно знать
Электрическая ёмкость
Размерность L-2M-1T4I2
Единицы измерения
СИ фарад
СГС сантиметр

Определение. Некоторые формулы

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид

,

где  — заряд,  — потенциал проводника. К примеру, ёмкость проводящего шара (или сферы) радиуса равна (в системе СИ):

где  — электрическая постоянная (8,854⋅10−12 Ф/м),  — относительная диэлектрическая проницаемость.

Для системы из двух проводников, разделённых диэлектриком или вакуумом и обладающих равными по числу, но противоположными по знаку зарядами , ёмкость (взаимная ёмкость) определяется как отношение величины заряда к разности потенциалов проводников. Если принять потенциал одного из проводников за нуль, формула останется в силе и для этого случая.

Дискретный элемент электрической цепи на базе вышеописанной системы, обладающий значительной ёмкостью, называется конденсатором. Два проводника при этом именуются обкладками. Для плоского конденсатора ёмкость равна:

,

где  — площадь обкладки (подразумевается, что обкладки одинаковы),  — расстояние между обкладками.

Электрическая энергия, запасённая конденсатором, составляет

,

где  — напряжение между обкладками.

Обозначение и единицы измерения

Ёмкость принято обозначать большой латинской буквой (от англ. capacitance — ёмкость, вместимость).

В системе единиц СИ ёмкость выражается в фарадах, сокращённо «Ф». Проводник обладает ёмкостью в один фарад, если при величине потенциала его поверхности один вольт этот проводник несёт заряд в один кулон. Один фарад — очень большая ёмкость, реальные проводники обладают ёмкостью порядка нано- или микрофарад. Название «Фарад» появилось в честь М. Фарадея.

Единицей измерения ёмкости в системе СГС выступает сантиметр. Соотношение: 1 см ёмкости ≈ 1,1126 пФ; 1 Ф = 8,988×1011 см ёмкости.

Свойства ёмкости

  • Ёмкость всегда положительна[2], за исключением случаев некоторых структур с сегнетоэлектриками.
  • Ёмкость зависит только от геометрических размеров проводника и диэлектрических свойств среды (для конденсатора — заполняющего его материала изолятора).
  • Ёмкость опосредованно зависит от температуры и частоты сигнала (через зависимость проницаемости среды от соответствующих величин).
  • В случае среды с постоянными значениями ёмкость является константой, но в случае нелинейной среды, когда зависит от напряжённости электрического поля, ёмкость будет изменяться с напряжением.
  • Применительно к цепи синусоидального тока с частотой , элементу «ёмкость» может быть приписано реактивное сопротивление .
  • Напряжение на ёмкости не может изменяться скачком[3].

Дифференциальная ёмкость

Дифференциальной (малосигнальной) ёмкостью называется производная от заряда проводника по потенциалу

,

которая определяется для выбранных условий . Эта величина характеризует реакцию проводника на малое изменение потенциала. Если зависимость заряда от потенциала линейна, то , но на практике встречаются и более сложные случаи.

Широкое распространение получили измерения так называемых вольт-фарадных характеристик структур металл-диэлектрик-полупроводник — зависимостей при разных частотах изменения потенциала со временем по закону . Такие измерения дают ценную информацию о качестве диэлектрика.

Электрическая ёмкость некоторых систем

Вычисление электрической ёмкости системы требует решение Уравнения Лапласа 2φ = 0 с постоянным потенциалом φ на поверхности проводников. Это тривиально в случаях с высокой симметрией. Нет никакого решения в терминах элементарных функций в более сложных случаях.

В квазидвумерных случаях аналитические функции отображают одну ситуацию на другую, электрическая ёмкость не изменяется при таких отображениях. См. также Отображение Шварца — Кристоффеля.

Электрическая ёмкость простых систем (СГС)
Вид Ёмкость Комментарий
Плоский конденсатор S: Площадь
d: Расстояние
Два коаксиальных цилиндра l : Длина
R1
: Радиус
R: Радиус
Две параллельные проволоки[4] a: Радиус
d: Расстояние, d > 2a
Проволока параллельна стене[4] a: Радиус
d: Расстояние, d > a
l: Длина
Две параллельные
копланарные полосы[5]
d: Расстояние
w1, w: Ширина полос
km: d/(2wm+d)

k2: k1k2
K: Эллиптический интеграл
l: Длина

Два концентрических шара R1: Радиус
R2: Радиус
Два шара одинакового радиуса[6][7]

a : Радиус
d: Расстояние, d > 2a
D = d/2a
γ: Постоянная Эйлера
Шар вблизи стены[6] a: Радиус
d: Расстояние, d > a
D = d/a
Шар a: Радиус
Круглый диск[8] a : Радиус
Тонкая прямая проволока,
ограниченная длина[9][10][11]
a: Радиус проволоки
l: Длина
Λ: ln(l/a)

Эластанс

Величина обратная ёмкости называется эластанс (эластичность). Единицей эластичности является дараф (daraf), но он не определён в системе физических единиц измерений СИ[12].

См. также

Примечания

Литература

  • Боргман И. И.,. Электроёмкость // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Савельев И.В. Глава X. Движение заряженных частиц. // Курс общей физики. — 3. — М.: Наука. Гл. ред. физ.-мат. лит., 1988. — Т. 2. — С. 87—88. — 496 с. — 220 000 экз.
  • Г. Крон. Тензорный анализ сетей. — Москва: Сов. радио, 1978. — 720 с.