Материал из РУВИКИ — свободной энциклопедии

Связное пространство

Множество A связно, а множество B несвязно.

Связное пространство — топологическое пространство, которое не может быть представлено как объединение двух или более непересекающихся непустых открытых подмножеств. Связность является важнейшим топологическим инвариантом и обобщает понятие линейной связности.

Определение[править | править код]

Непустое топологическое пространство называется несвязным, если его можно представить в виде объединения двух непустых непересекающихся открытых подмножеств. Связное пространство — топологическое пространство, не являющееся несвязным.

Пустое пространство обычно считается несвязным, хотя в литературе по этому поводу имеются разночтения.

Говорят, что подмножество топологического пространства является связным, если оно связано как пространство с индуцированной топологией.

Эквивалентные определения[править | править код]

Пусть  — топологическое пространство. Тогда следующие условия эквивалентны:

  1. связно.
  2. нельзя разбить на два непустых непересекающихся замкнутых подмножества.
  3. Единственные подмножества , являющиеся одновременно открытыми и замкнутыми, — пустое множество и всё пространство .
  4. Единственные подмножества с пустой границей — пустое множество и всё пространство .
  5. не может быть представлено в виде объединения двух непустых множеств, каждое из которых не пересекается с замыканием другого.
  6. Единственными непрерывными функциями из в двухточечное множество (с дискретной топологией) являются константы.

Связанные определения[править | править код]

  • Каждый элемент топологического пространства содержится в его некотором максимальном связном подмножестве. Такие максимальные связные подмножества называются его компонентами связности, связными компонентами или просто компонентами.
    • Пространство, в котором каждая компонента связности состоит из одной точки, называется вполне несвязным. Примером могут служить любые пространства с дискретной топологией, пространство рациональных чисел на числовой прямой и канторово множество.
  • Если существует база топологии пространства , состоящая из связных открытых множеств, тогда топология пространства и само пространство (в этой топологии) называются локально связными.
  • Связное компактное хаусдорфово пространство называется континуумом.
  • Пространство , для любых двух различных точек и которого существуют открытые непересекающиеся множества и такие, что , называется вполне раздельным.[источник не указан 2392 дня] Любое вполне раздельное пространство вполне несвязно, однако обратное неверно. Например, рассмотрим пространство, состоящее из двух копий множества , введём на нём отношение эквивалентности по правилу . Факторпространство по этому отношению является вполне несвязным, однако для двух (по определению различных) копий нуля не найдётся двух открытых множеств, удовлетворяющих определению вполне раздельного пространства.

Свойства[править | править код]

  • В любом топологическом пространстве одноточечные подмножества — связные.
  • В связном пространстве каждое подмножество (кроме пустого и всего пространства) имеет непустую границу.
    • Подмножества с пустой границей являются одновременно открытыми и замкнутыми подмножествами и называются просто открыто-замкнутыми. В связном пространстве все открыто-замкнутые подмножества тривиальны — либо пусты, либо совпадают со всем пространством.
  • Образ связного множества при непрерывном отображении связен.
  • Связность пространства — топологическое свойство, то есть свойство, инвариантное относительно гомеоморфизмов.
  • Замыкание связного подмножества связно.
    • Более того, всякое «промежуточное» подмножество () тоже связно. Другими словами, если связное подмножество плотно в , то множество тоже связно.
  • Пусть  — семейство связных множеств, каждое из которых имеет непустое пересечение со связным множеством . Тогда множество
тоже связно. (То есть если к связному множеству подклеивать произвольное семейство связных множеств, объединение всегда будет оставаться связным.)
  • Произведение связных пространств связно. Если хоть один из множителей несвязен, произведение будет несвязным.
  • Каждая компонента пространства является замкнутым множеством. Различные компоненты пространства не имеют общих точек. Компоненты связности подмножества пространства  — это максимальные связные подмножества множества .
  • Непрерывное отображение из связного пространства во вполне несвязное сводится к отображению в одну точку.
  • Локально связные пространства не обязаны быть связными, а связные — не обязаны быть локально связными.
  • В локально связном пространстве компоненты связности открыты.
  • Любое линейно связное пространство связно.
    • Обратное неверно; например замыкание графика функции связно, но линейно не связно (это множество содержит отрезок на оси ординат).

Примеры[править | править код]

Вариации и обобщения[править | править код]

См. также[править | править код]