Близким понятием является фундаментальная группа, операция в которой в общем случае некоммутативна. Первая группа гомологий отличается от фундаментальной тем, что она хранит меньше информации о топологическом пространстве. В связи с этим её проще вычислять. Если фундаментальная группа пространства абелева, то она изоморфна первой группе гомологий, а в общем случае первая группа гомологий является абелианизацией фундаментальной.
Одномерным циклом[1] в топологическом пространстве называется произвольный упорядоченный набор петель в нём, то есть непрерывное отображение из дизъюнктного объединения окружностей вида
,
где . Число называется количеством компонент цикла. При цикл является петлей, а при — пустым отображением.
Индуцирование ориентации с поверхности на её граничные компоненты.
Два одномерных цикла с компонентами и с компонентами называются гомологичными, если существуют такие
непрерывное отображение , где — дизъюнктное объединение нескольких ориентированных сфер с ручками и дырками, общее число дырок в котором равно ,
вложения , параметризующие граничные окружности поверхности в направлении, согласованном с её ориентацией,
что сужение отображения на окружность индекса совпадает с петлей для всех , а сужение отображения на окружность индекса совпадает с петлей для всех , где символ обозначает цикл, отличающийся от цикла лишь направлением обхода каждой окружности. В этом случае отображение называется гомологией между циклами и .
Гомологичность является отношением эквивалентности на множестве всех одномерных циклов. Множество всех классов эквивалентности называется первой группой гомологий пространства и обозначается символом .
Множество наделяется структурой абелевой группы: суммой двух гомологических классов называется гомологический класс объединения соответствующих одномерных циклов. Относительно такой операции нулём является гомологический класс пустого отображения, а противоположным элементом к данному — гомологический класс цикла , получающегося из некоторого представителя данного класса обращением направления обхода всех его компонент.
Если одномерный цикл гомологичен пустому отображению, то говорят, что он гомологичен нулю или является границей. Иными словами, цикл с компонентами гомологичен нулю, если он продолжается до отображения из сферы с ручками и дырками.
Отношение гомологичности циклов выражается через гомологичность нулю. А именно, два одномерных цикла и гомологичны тогда и только тогда, когда цикл гомологичен нулю.
Первым числом Бетти пространства называется ранг абелевой группы , рассматриваемой как модуль над кольцом целых чисел. Как следует из названия, является частным случаем чисел Бетти.
Если два отображения гомотопны, то они индуцируют одинаковые гомоморфизмы первых групп гомологий: . В связи с этим сопоставление продолжается до функтора из гомотопической категории в категорию абелевых групп.
Поскольку сфера с нулём ручек и двумя дырками гомеоморфна цилиндру, гомологичность является обобщением гомотопности. В частности, если два одномерных цикла гомотопны, то они гомологичны. В отличие от гомотопности, у гомологичных циклов количество компонент может различаться.
Имеется естественный гомоморфизм из фундаментальной группы пространства в его первую группу гомологий. Он сопоставляет гомотопическому классу петли её гомологический класс. Можно проверить, что относительно данного отображения произведение переходит в сумму, и тем самым оно действительно является гомоморфизмом. Его ядро совпадает с коммутантом фундаментальной группы. В случае, когда пространство линейно связно, данный гомоморфизм сюръективен, и тем самым
,
то есть первая группа гомологий изоморфна абелианизации фундаментальной группы[2].
В частности, первая группа гомологий линейно связного пространства тривиальна тогда и только тогда, когда его фундаментальная группа каинова.