Билинейное преобразование может быть использовано для преобразования непрерывного времени, например, при аналитическом описании линейных фильтров, представленных преобразованием Лапласа, в дискретное время выборок с периодом представленное в z-области и обратно. При таком преобразовании используется замена переменной:
Обратный переход от z-преобразования к преобразованию Лапласа производится аналогичной заменой переменной:
Билинейное преобразование отображает комплексную s-плоскость преобразования Лапласа на комплексную z-плоскость z-преобразования. Это отображение нелинейное и характерно тем, что отображает ось s-плоскости на единичную окружность в z-плоскости.
Таким образом, преобразование Фурье, которое является преобразованием Лапласа для переменной , переходит в преобразование Фурье с дискретным временем. При этом предполагается, что преобразование Фурье существует, то есть ось находится в области сходимости преобразования Лапласа.