Тетрациклины (англ.tetracyclines)— группа антибиотиков, относящихся к классу поликетидов, близких по химическому строению и биологическим свойствам. Представители данного семейства характеризуются общим спектром и механизмом антимикробного действия, полной перекрёстной устойчивостью, близкими фармакологическими характеристиками. Различия касаются некоторых физико-химических свойств, степени антибактериального эффекта, особенностей всасывания, распределения, метаболизма в макроорганизме и переносимости.
Основой молекулы тетрациклиновых антибиотиков является полифункциональное гидронафтаценовое соединение с родовым названием тетрациклин. В химическом отношении различие между хлортетрациклином и окситетрациклином состоит в том, хлортетрациклин в 7-м положении содержит хлор, а окситетрациклин в 5-м положении — гидроксильную группу. В отличие от хлортетрациклина и окситетрациклина тетрациклин не имеет атома хлора в 7-м положении и гидроксильной группы в 5-м положении.
В сухом виде тетрациклины стабильны, устойчивость тетрациклинов в растворах зависит от pH среды. Они наиболее устойчивы в кислой среде, в щелочной их активность быстро снижается. Самым лабильным в щелочных средах является хлортетрациклин. В кислой среде наиболее устойчив тетрациклин.
Средняя скорость 50 % инактивации водных растворов тетрациклинов:
Антибиотик
Температура в °C
Время, в течение которого антибиотик инактивируется на 50 % при pH раствора
1,0
2,5
7
8,5
13,0
тетрациклин
22—25
—
12 дней
3 дня
12 ч.
—
37
—
—
>24 ч.
—
—
100
1 мин.
15 мин.
—
—
7 мин.
окситетрациклин
22—25
>30 дней
—
7 дней
—
—
37
~4,5 дня
5½—12 дней
26 ч.
33 ч.
—
100
4,5 мин.
—
—
—
2 мин.
хлортетрациклин
22—25
—
14 дней
10 ч.
4 ч.
—
37
—
24 ч.
4—5 ч.
—
—
100
2 мин.
—
—
—
0,3 мин.
Зависимость инактивации водных растворов тетрациклинов от pH среды (количество инактивируемого препарата в процентах):
Антибиотик
Время в ч.
% при pH
7,0
8,0
тетрациклин
10
2
36
24
42
82
окситетрациклин
10
34
25
24
66
75
хлортетрациклин
10
65
95
24
95
99,7
Стабильность водных растворов тетрациклинов (сохранение 100 % активности):
Антибиотик
pH
Температура в °C
Продолжительность сохранения активности в днях
тетрациклин
3—5,2
20—37
6
окситетрациклин
1—2,5
5—25
30
хлортетрациклин
2,9
4
23
Большой интерес представляют карбоксамидные производные тетрациклинов, полученные на основе аминометилирования исходного продукта. Они характеризуются рядом ценных свойств, к основным из которых относится высокая растворимость в воде при широком колебании значений pH (2,0—8,5). Соединением этого типа является тетрациклин для парентерального применения — ролитетрациклин (синонимы: реверин, велациклин, пирролидинометилтетрациклин и др.), который в первые часы после внутривенного или внутримышечного введения создаёт в крови более высокие концентрации, чем тетрациклина гидрохлорид.
Тетрациклины являются антибиотиками широкого спектра действия. Высокоактивны in vitro в отношении большого числа грамположительных и грамотрицательных бактерий. В высоких концентрациях действуют на некоторых простейших. Мало или совсем неактивны в отношении плесневых грибов. Недостаточно активны в отношении кислотоустойчивых бактерий.
По активности в отношении грамположительных бактерий уступают пенициллину и примерно равны левомицетину.
Большинство грамположительных бактерий чувствительны к концентрации тетрациклинов 1 мкг/мл и менее, большинство грамотрицательных — к 1—25 мкг/мл.
Рост Proteus spp. и синегнойной палочки задерживается при концентрациях не меньше 125—250 мкг/мл.
Минимальная подавляющая концентрация тетрациклинов для патогенных лептоспир колеблется в пределах 1—5 мкг/мл, для возбудителя листериоза — в пределах 0,5—5 мкг/мл.
Гибель спирохет среднеазиатского возвратного тифа наблюдается при воздействии 10—100 мкг/мл.
Амёбостатическое действие проявляется при концентрации 32—250 мкг/мл.
В дозе 25—250 мкг/мл тетрациклины задерживают развитие в куриных эмбрионах бактерий группы пситтакоза — лимфогранулемы и удлиняют латентный период размножения вируса гриппа типа D.
Антибиотические спектры индивидуальных тетрациклинов очень близки между собой, несколько отличаясь in vitro в отношении ряда микроорганизмов. Активность их в отношении грамположительных бактерий в большинстве случаев уменьшается в ряду хлортетрациклин-тетрациклин-окситетрациклин. Многие штаммы грамотрицательных бактерий (Proteus spp., E. coli, Aerobacter и др.) несколько более чувствительны к тетрациклину, чем к хлортетрациклину. Из трёх тетрациклинов окситетрациклин является наиболее активным амёбоцидным агентом. Он превосходит хлортетрациклин по действию на некоторые риккетсии (Rickettsia akari, R. burneti) и подавляет рост Ps. aeruginosa и Mycobacteruim в концентрациях более низких, чем другие тетрациклины. Наибольшие различия в чувствительности к трём тетрациклинам обнаружены среди штаммов грамотрицательных бактерий. Цифры, характеризующие сравнительную антимикробную активность тетрациклинов in vitro, в значительной степени зависят от методов её определения. Так, при посеве испытуемого штамма штрихом на агар с известной концентрацией антибиотика (метод диффузии в агар) их активность примерно одинакова при pH агара 7,8; при pH 6,0 более активен хлортетрациклин. Меньшая антимикробная активность хлортетрациклина в ряде случаев связана в значительной степени с его более низкой стабильностью в питательных средах. Несмотря на определённые количественные различия в действии отдельных тетрациклинов на некоторые виды микробов in vitro, они не имеют существенного практического значения. Как правило, в клинике при лечении тех или иных заболеваний выявить преимущественную активность одного из тетрациклинов перед другими не удаётся. В обычно применяемых концентрациях тетрациклины действуют бактериостатически. Их бактерицидное действие на некоторые микроорганизмы проявляется лишь при концентрациях, в 30—60 раз превышающих бактериостатические.
Бактериостатические и бактерицидные концентрации тетрациклина:
Минимальная подавляющая рост микробов концентрация тетрациклинов обычно учитывается после 18—24 ч. инкубации посевов с антибиотиками. При удлинении срока инкубации минимальная подавляющая концентрация резко возрастает и приближается к бактерицидной. Это связано с низкой стабильностью тетрациклинов в условиях термостата в слабощелочной среде. Цифры, характеризующие, антибактериальную активность тетрациклинов, зависят от состава, pH питательной среды, наличия в ней неорганических солей, некоторых витаминов и других факторов. Оптимум действия тетрациклина, окситетрациклина и хлортетрациклина — при pH 6,1—6,6. В присутствии одновалентных катионов активность тетрациклинов несколько повышается. Двух- и трёхвалентные металлы (железо, алюминий, медь, никель, кальций и др.), образуя с этими антибиотиками плохо растворимые в воде внутрикомплексные соединения, снижают их активность. Бактериальные фильтраты Proteus spp., Pseudomonas и некоторых других микроорганизмов инактивируют антибиотики. Активность тетрациклинов уменьшается также в присутствии гомогенатов печени, почек, лёгких и других органов. Специфические ферменты бактерий, инактивирующие тетрациклины, не обнаружены. Различные тетрациклины по-разному связываются белками сыворотки крови.
Связывание тетрациклинов белками сыворотки при температуре 37° (in vitro):
Антибиотик
Связанная часть в % при концентрации
10 мкг/мл
5 мкг/мл
тетрациклин
23
25
окситетрациклин
22
24
хлортетрациклин
64
69
Вопрос об антимикробной активности связанной белками части тетрациклинов окончательно не выяснен. Имеются данные о том, что in vitro антибактериальное действие тетрациклинов в присутствии сыворотки снижается, а связанная белками часть биологически не активна. Вместе с тем in vivo связь тетрациклинов с белками является непрочной и, по-видимому, обратимой. Тетрациклины действуют на вне- и внутриклеточно расположенные микроорганизмы. Влияние антибиотиков этой группы на внутриклеточно расположенного возбудителя подтверждено экспериментально и в клинике при лечении инфекций, вызываемых бруцеллами. Степень чувствительности бактерий к тетрациклинам зависит от их функционального состояния. Молодые, быстро размножающиеся культуры более чувствительны к действию антибиотиков, чем находящиеся в фазе покоя. При переходе из фазы покоя в фазу интенсивного деления чувствительность микробов к тетрациклинам резко повышается. Действие на размножающихся бактерий сопровождается заметными изменениями морфологии клеток. У бактерий, находящихся в стадии покоя, морфологических изменений при контакте с тетрациклинами не отмечено.
В основе антибактериального действия тетрациклинов лежит подавление белкового синтеза. Тетрациклины являются специфическими ингибиторами как EF-Tu-промотируемого, так и неэнзиматического связывания аминоацил-тРНК с A-участком бактериальной 70S рибосомы. Тетрациклины подавляют также кодон-зависимое связывание аминоацил-тРНК с изолированной 30S субединицей бактериальной рибосомы. В соответствии с этим, место специфического связывания тетрациклинов с рибосомой обнаружено на 30S субъединице рибосомы, хотя при более высоких концентрациях они могут связываться также и с 50S субединицей, обнаруживая побочные действия. Интересно, что когда тройственный комплекс Aa-tRNA•EF-Tu•GTP взаимодействует с 70S рибосомой в присутствии тетрациклиновых антибиотиков, то ГТФ гидролизуется и EF-G•GDP освобождается, но аминоацил-тРНК не остаётся связанной. По-видимому, антибиотик, будучи связан где-то в районе тРНК-связывающего A-участка на 30S субчастице рибосомы, ослабляет сродство участка к тРНК, приводя к её плохому удержанию после ухода EF-Tu. Хотя тетрациклины не действуют на эукариотические клетки из-за непроницаемости их мембран для антибиотика, в эукариотических бесклеточных системах они тоже оказываются сильными ингибиторами, подавляя связывание аминоацил-тРНК с 80S рибосомами.
Применение при беременности и в период грудного вскармливания[править | править код]
Тетрациклины обладают тератогенным эффектом. Проникают через плацентарный барьер.
Противопоказаны к применению при беременности и в период лактации. Могут вызывать необратимое изменение цвета зубов, гипоплазию эмали, подавление роста костей. Не допускается применения тетрациклинов у детей ранее 8-го года жизни.
Устойчивость микроорганизмов к тетрациклинам in vitro развивается медленно, по пенициллиновому типу. Общим правилом для большинства видов микроорганизмов является медленное нарастание устойчивости при первых 10-18 пассажах и более быстрое и неравномерное — в дальнейшем. При пассажах на агаре удаётся получить бо́льшую устойчивость, чем в бульоне — жидкой питательной среде. Скорость возрастания устойчивости зависит от индивидуальных особенностей штамма. С трудом, очень медленно и незначительно адаптируются к тетрациклинам бруцеллы, клебсиеллы и некоторые другие микроорганизмы. Резистентные формы, как правило, утрачивают устойчивость после ряда пересевов на среды, не содержащие антибиотика. В условиях in vitro резистентность микробов к одному из тетрациклинов сопровождается перекрёстной устойчивостью к другим антибиотикам этой группы, что объясняется близостью их химического строения и механизма действия. Практически не обнаруживаются штаммы микроорганизмов, сохранившие чувствительность к одному из тетрациклинов при развитии устойчивости к другому. У штаммов, резистентных к тетрациклинам, нередко отмечается устойчивость к левомицетину. Чаще всего устойчивые к тетрациклинам штаммы обнаруживаются среди стафилококков и возбудителей желудочно-кишечных инфекций; так например, у больных хронической дизентерией устойчивые штаммы выделяются в 2 раза чаще, чем у больных острой дизентерией. Также наблюдается увеличение числа штаммов гемолитических стрептококков и пневмококков устойчивых к тетрациклинам, которые, однако, сохраняют высокую чувствительность к пенициллину и эритромицину. Возникновение устойчивости к тетрациклинам не всегда находится в прямой зависимости от продолжительности лечения и применяемой дозы препарата. У одних больных устойчивые стафилококки начинают выделяться вскоре после начала лечения, у других даже при длительном применении антибиотиков чувствительность возбудителя не изменяется. Несмотря на более частое обнаружение устойчивых штаммов у длительно лечившихся больных, установить непосредственную зависимость между интенсивностью применения тетрациклинов и частотой выделения резистентных бактерий не всегда удаётся. Тетрациклиноустойчивые штаммы микроорганизмов различных групп с большей частотой выделяются у госпитализированных больных по сравнению с амбулаторными, чему способствуют контакт и последующее заражение множественноустойчивыми штаммами от больных и обслуживающего персонала — носителей таких штаммов. Основной путь предотвращения распространения тетрациклиноустойчивых штаммов микроорганизмов является использование для лечения сочетаний антибиотиков с различным механизмом антимикробного действия. Синергидными чаще всего являются комбинации тетрациклинов с олеандомицином, эритромицином. В отношении ряда возбудителей установлено усиление антибактериального эффекта при сочетании тетрациклина со стрептомицином. Следует учитывать, что результаты, полученные при изучении комбинаций тетрациклинов с другими антибиотиками in vitro, не всегда подтверждаются в клинике. Сочетания тетрациклина с пенициллином с отчётливым антагонизмом in vitro оказываются иногда синергидными в условиях организма больного.