Для непрерывной функции двух переменных их графики представляют собой поверхности в трёхмерном пространстве, являющиеся геометрическим местом точек Эти поверхности могут быть изображены на плоскости в какой-либо изометрической проекции (см. рисунок).
В случае использования прямоугольной системы координат, график функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y), которые связаны отображаемой функцией:
Таким образом, функция может быть адекватно описана своим графиком.
Из определения графика функции следует, что далеко не всякое множество точек плоскости может быть графиком некоторой функции, например, из требования однозначности функции вытекает, что никакая прямая, параллельная оси ординат не может пересекать график функции более чем в одной точке. Если функция обратима, то график обратной функции (как подмножество плоскости) будет совпадать с графиком самой функции (это, попросту, одно и то же подмножество плоскости).
Некоторые функции определены только в конечном дискретном множестве аргумента, при этом график таких функций представляет собой множество точек, например график функции определённой как:
При рассмотрении отображения произвольного вида , действующего из множества в множество , графиком функции называется следующее множество упорядоченных пар: