Белки теплового шока (англ.HSP, heat shock proteins) — это класс функционально сходных белков, экспрессия которых усиливается при повышении температуры или при других стрессирующих клетку условиях.[1]
Повышение экспрессии генов, кодирующих белки теплового шока, регулируется на этапе транскрипции. Чрезвычайное усиление экспрессии является частью клеточного ответа на тепловой шок и вызывается в основном фактором теплового шока (HSF англ.heat shock factor).[2] Эти белки обнаружены в клетках практически всех живых организмов, от бактерий до человека. Белки теплового шока называют согласно их молекулярным массам. Например, наиболее изученные белки теплового шока Hsp60, Hsp70 и Hsp90 относятся к семействам белков с молекулярными массами 60, 70 и 90 кДа, соответственно.[3]Убиквитин является относительно небольшим белком (8 кДа), выполняющим функции белков теплового шока. Убиквитином в клетке помечаются белки, предназначенные для деградации.[4]
Было показано, что быстрое нагревание до сублетальных температур делает организмы нечувствительными к нагреванию до более высоких температур. В 1962 году Ритосса показал, что нагревание и ингибитор метаболизмадинитрофенол вызывают сходные изменения в структуре пуффовполитенных хромосомдрозофилы. Это открытие далее привело к выделению белков теплового шока англ.heat-shock proteins (HSP) или белков стресса. Повышение экспрессии генов, кодирующих указанные белки у дрозофилы было показано в 1974 году. Экспрессия повышалась после действия на мух стрессирующих факторов, например, теплового шока.[5]
Точный механизм, по которому тепловой шок активирует экспрессию генов белков теплового шока, не выяснен. Однако, некоторые исследования свидетельствуют о том, что активация белков теплового шока происходит неправильно сложенными или поврежденными белками.
Белки теплового шока действуют как внутриклеточные шапероны в отношении других белков. Белки теплового шока играют важную роль в белок-белковых взаимодействиях, например, при фолдинге и сборке сложных белков, препятствуют нежелательной агрегации белков. Белки теплового шока стабилизируют частично свернутые белки и облегчают их транспорт через мембраны внутри клетки.[7][8]
Некоторые белки теплового шока экспрессируются в малых или умеренных количествах во всех типах клеток всех живых организмов, так как играют ключевую роль в существовании белков.
Белки теплового шока присутствуют в клетках и при нестрессовых условиях, как бы следят за белками в клетке. Белки теплового шока утилизируют старые белки в составе протеасомы и помогают корректно свернуться заново синтезированным белкам.
По-видимому, белки теплового шока играют важную роль в сердечно-сосудистой системе. Для белков теплового шока hsp90, hsp84, hsp70, hsp27, hsp20, и альфа-B-кристаллин показана роль деятельности сердечно-сосудистой системы.[9]
В системе передачи сигнала при помощи оксида азота далее протеинкиназа G фосфорилирует малый белок теплового шока, hsp20, который принимает участие в расслаблении гладких мышц.[11] Hsp20 по-видимому, играет важную роль в развитии гладких мышц и предотвращает агрегациютромбоцитов, предотвращает апоптоз после ишемического инсульта, а также имеет значение в функционировании скелетных мышц и ответе мышц на инсулин. [12]
Hsp27 является главным фосфопротеином при мышечном сокращении.[13]
Так как некоторые белки теплового шока играют роль в презентации антигенов,[14] их используют в качестве адъювантов для вакцин.[17] Более того, некоторые исследователи считают, что белки теплового шока могут принимать участие в связывании белковых фрагментов разрушенных опухолевых клеток, осуществляя презентацию антигена иммунной системе.[18] Некоторые белки теплового шока могут повышать эффективность вакцин против рака.[14][19]
Исследована роль белков теплового шока в устойчивости к стрессу у гибридов растений, что может далее привести к выведению засухоустойчивых сортов, растущих на бедной почве.[22]
Белки теплового шока, которые имеют функции шаперонов, классифицируют в пять классов: HSP33,HSP60, HSP70, HSP90, HSP100, и малые белки теплового шока (sHSPs).[5]
Группа белков теплового шока HspA. Включает в себя Hsp71, Hsp70, Hsp72, Grp78 (BiP). Причем Hsx70 обнаружен только у приматов
Принимает участие в сворачивании и разворачивании белков, обеспечивает клетке нечувствительность к нагреванию. Предотвращает сворачивание белков в ходе посттрансляционного транспорта в митохондрии и хлоропласты.
↑De Maio A. Heat shock proteins: facts, thoughts, and dreams (неопр.) // Shock (Augusta, Ga.). — 1999. — January (т. 11, № 1). — С. 1—12. — PMID 9921710.
↑Wu C. Heat shock transcription factors: structure and regulation (англ.) // Annual review of cell and developmental biology : journal. — 1995. — Vol. 11. — P. 441—469. — doi:10.1146/annurev.cb.11.110195.002301. — PMID 8689565.
↑Li Z., Srivastava P. Heat-shock proteins (неопр.) // Current protocols in immunology / edited by John E. Coligan ... [et al.]. — 2004. — February (т. Appendix 1). — С. Appendix 1T. — doi:10.1002/0471142735.ima01ts58. — PMID 18432918.
↑Raboy B., Sharon G., Parag H.A., Shochat Y., Kulka R.G. Effect of stress on protein degradation: role of the ubiquitin system (англ.) // Acta biologica Hungarica : journal. — 1991. — Vol. 42, no. 1—3. — P. 3—20. — PMID 1668897.
↑Santoro M.G. [h Heat shock factors and the control of the stress response] (англ.) // Biochemical pharmacology : journal. — 2000. — January (vol. 59, no. 1). — P. 55—63. — doi:10.1016/S0006-2952(99)00299-3. — PMID 10605935.
↑Walter S., Buchner J. Molecular chaperones--cellular machines for protein folding (неопр.) // Angewandte Chemie (International ed. In English). — 2002. — April (т. 41, № 7). — С. 1098—1113. — doi:10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9. — PMID 12491239.
↑Borges J.C., Ramos C.H. Protein folding assisted by chaperones (неопр.) // Protein and peptide letters. — 2005. — April (т. 12, № 3). — С. 257—261. — doi:10.2174/0929866053587165. — PMID 15777275.
↑McLemore E.C., Tessier D.J., Thresher J., Komalavilas P., Brophy C.M. Role of the small heat shock proteins in regulating vascular smooth muscle tone (англ.) // Journal of the American College of Surgeons : journal. — 2005. — July (vol. 201, no. 1). — P. 30—6. — doi:10.1016/j.jamcollsurg.2005.03.017. — PMID 15978441.
↑Fan G.C., Ren X., Qian J., Yuan Q., Nicolaou P., Wang Y., Jones W.K., Chu G., Kranias E.G. Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury (англ.) // Circulation (журнал) : journal. — Lippincott Williams & Wilkins, 2005. — April (vol. 111, no. 14). — P. 1792—1799. — doi:10.1161/01.CIR.0000160851.41872.C6. — PMID 15809372.
↑Vinocur B., Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations (англ.) // Current opinion in biotechnology : journal. — 2005. — April (vol. 16, no. 2). — P. 123—132. — doi:10.1016/j.copbio.2005.02.001. — PMID 15831376.