Электрофил
Электрофил (от др.-греч. ἤλεκτρον — «янтарь» + др.-греч. φιλέω — «любить», дословно «любящий электроны») — реагент или молекула, имеющая свободную орбиталь на внешнем электронном уровне. Как правило такие реагенты являются акцепторами пары электронов при образовании химической связи с нуклеофилом, являющимся донором электронной пары и вытесняет уходящую группу в виде положительно заряженной частицы[1]. Все электрофилы являются кислотами Льюиса.
Электрофилы проявляют свойства электронодефицитных реагентов, стремящихся к заполнению вакантной орбитали электронами. К электрофилам относятся положительно заряженные ионы — катионы (самый простой пример протон H+, карбокатионы, NO2+), электронодефицитные нейтральные молекулы — SO3, а также молекулы с сильнополяризованной связью (HCOO-Br+).
Реакции, протекающие с участием электрофилов:
Примеры
Реакции электрофильного присоединения AdE
Характерны для углеводородов с ненасыщенными связями — алкенам, диенам, алкинам. Наиболее распространённой реакцией AdE является присоединение галогенов к кратной связи. Галогены выступают в роли электрофилов. Механизм присоединения рассмотрен на примере образования 1,2-дибромэтана, в результате взаимодействия этилена с бромом по реакции:
- .
Присоединение брома по кратной связи включает 3 стадии:
- Образование π-комплекса
- Молекула Br2 выступающая в роли электрофила взаимодействует с электронодонорной молекулой алкена, в результате образуется нестабильный интермедиат (промежуточное соединение) — π-комплекс. Стадия протекает быстро.
- Образование циклического бромониевого иона
- На этой стадии происходит преобразование π-комплекса в циклический бромониевый ион. В процессе образования этого циклического катиона происходит гетеролитический разрыв связи Br-Br и пустая р-орбиталь sp2-гибридизованного атома углерода перекрывается с р-орбиталью «неподелённой пары» электронов атома галогена, образуя циклический ион бромония.
- Нуклеофильная атака бромид-иона
- На последней, третьей стадии анион брома как нуклеофильный агент атакует один из атомов углерода бромониевого иона. Нуклеофильная атака бромид-иона приводит к раскрытию трёхчленного цикла и образованию вицинального дибромида (от лат. vic — рядом). Эту стадию формально можно рассматривать как нуклеофильное замещение SN2 у атома углерода, где уходящей группой является катион брома Br+ .
Данный механизм относится к реакции бимолекулярного электрофильного присоединения AdE2
Присоединение галогеноводородов
Другой важной реакций электрофильного присоединения к ненасыщенным углеводородам является давно известное гидрогалогенирование.
Шкала электрофильности
| Индекс электрофильности | |
| Фтор | 3.86 |
| Хлор | 3.67 |
| Бром | 3.40 |
| Йод | 3.09 |
| Гипохлорит ион | 2.52 |
| Диоксид серы | 2.01 |
| Сероуглерод | 1.64 |
| Бензол | 1.45 |
| Натрий | 0.88 |
| Некоторые выбранные значения[2] (величина безразмерная). | |
Существуют несколько методов для ранжирования электрофилов в порядке их реактивности. Один из них это омега индекс — ω или индекс электрофильности, изобретённый американским физикохимиком Робертом Парром[2]. Омега индекс определяется как:
отношение квадрата электроотрицательности, к так называемой химической твёрдости. Это отношение соответствует уравнению нахождения электрической мощности:
где это электрическое сопротивление и — напряжение. В этом смысле индекс электрофильности является своего рода мощностью того или иного электрофильного реагента. Индекс электрофильности величина безразмерная.
Индекс электрофильности также существует для свободных радикалов[3].
Электрофилы как канцерогены
Негативные проявления связанные с канцерогенами, возникают вследствие наличия у последних электрофильных свойств, они легко взаимодействуют с нуклеофильными группами азотистых оснований (NH2-группы), входящих в состав нуклеиновых кислот, в частности ДНК, образуя с ней ковалентно связанные (зачастую прочно) ДНК-аддукты[4]. Особенно это свойство выражено у генотоксических канцерогенов.


