Для орбиты небесного тела с эксцентриситетом и наклонением, которое вращается вокруг большего тела, сохраняется следующее постоянное соотношение:
Глядя на это соотношение, можно сказать, что эксцентриситет может быть «обменян» на наклонение и наоборот, и это периодическое колебание может привести к резонансу между двумя небесными телами. Таким образом, почти круговые, чрезвычайно наклонные орбиты могут получить очень большой эксцентриситет в обмен на меньшее наклонение. Так, например, увеличивающийся эксцентриситет, при постоянной большой полуоси уменьшает расстояние между объектами в перигелии, и этот механизм может заставить кометы становиться околосолнечными.
Как правило, для объектов на орбитах с небольшим наклонением подобные колебания приводят к прецессииаргумента перицентра. Начинаясь с некоторого значения угла, прецессия переходит в либрацию около одного из двух значений угла:90° или 270°, то есть перицентр (точка максимального сближения) будет колебаться вокруг этого значения. Минимальный угол наклонения называется углом Козаи и равен:
Для ретроградных спутников он равен 140,8°.
Физически эффект связан с передачей момента импульса и сохранением его общего количества в связанной системе (см. также интеграл Якоби).
Механизм Лидова является причиной того, что небесное тело располагается в перицентре, когда оно находится на самом большом расстоянии от экваториальной плоскости. Этот эффект — одна из причин того, что Плутон защищён от столкновений с Нептуном[7].
Резонанс Лидова также устанавливает ограничения для орбит, возможных в пределах системы, например:
для регулярных спутников планет: если орбита спутника планеты будет сильно наклонена к орбите планеты, то эксцентриситет спутниковой орбиты будет увеличиваться до тех пор пока спутник не будет разрушен приливными силами при очередном сближении[1].
для нерегулярных спутников: растущий эксцентриситет приведёт к столкновению с другим спутником (центральной планетой), или, при их отсутствии, рост апоцентрического расстояния может выбросить спутник из сферы Хилла планеты.
Резонанс Лидова — Козаи использовался при обнаружении внешних планет солнечной системы (Девятая планета[8]), а также при исследовании экзопланет[9][10].
↑Лидов, М. Л. Эволюция орбит искусственных спутников под воздействием гравитационных возмущений внешних тел (рус.) // Искусственные спутники Земли : журнал. — 1961. — Т. 8. — С. 5—45.
↑Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies (англ.) // Planetary and Space Science : journal. — 1962. — Vol. 9. — P. 719—759.
↑более правильно его имя звучит как Ёсихидэ Кодзай (яп.古在 由秀Кодзай Ёсихидэ)
Lidov, Mikhail L. On approximate analysis of the evolution of orbits of artificial satellites (англ.) // Problems of Motion of Artificial Celestial Bodies. Proceedings of the Conference on General and Practical Topics of Theoretical Astronomy, Held in Moscow on 20–25 November 1961. : journal. — Publication of the Academy of Sciences of the USSR, Moscow 1963, 1963.
Shevchenko, Ivan I.The Lidov-Kozai Effect - Applications in Exoplanet Research and Dynamical Astronomy // Astrophysics and Space Science Library. — Cham: Springer International Publishing, 2017. — Т. 441. — ISBN 978-3-319-43520-6. — doi:10.1007/978-3-319-43522-0.