Горизонтальная система координат всегда топоцентрическая. Наблюдатель всегда находится в фиксированной точке на поверхности земли (отмечена буквой O на рисунке). Будем предполагать, что наблюдатель находится в Северном полушарии Земли на широте φ. При помощи отвеса определяется направление на зенит (z), как верхняя точка, в которую направлен отвес, а надир (Z') — как нижняя (под Землёй)[1]:38. Поэтому и линия (ZZ'), соединяющая зенит и надир называется отвесной линией[3]:12.
Плоскость, перпендикулярная к отвесной линии в точке O называется плоскостью математического горизонта. На этой плоскости определяется направление на юг (географический, не магнитный!) и север, например, по направлению кратчайшей за день тени от гномона. Кратчайшей она будет в истинный полдень, и линия (NS), соединяющая юг с севером, называется полуденной линией[1]:39. Точки востока (E) и запада (W) берутся отстоящими на 90 градусов от точки юга соответственно против и по ходу часовой стрелки, если смотреть из зенита. Таким образом, NESW — плоскость математического горизонта.
Плоскость, проходящая через полуденную и отвесную линии (ZNZ'S) называется плоскостью небесного меридиана, а плоскость, проходящая через небесное тело — плоскостью вертикала данного небесного тела. Большой круг, по которому она пересекает небесную сферу, называется вертикалом небесного тела[1]:40.
В горизонтальной системе координат одной координатой является либо высотасветилаh, либо его зенитное расстояниеz. Другой координатой является азимутA.
Высотойh светила называется дуга вертикала светила от плоскости математического горизонта до направления на светило. Высоты отсчитываются в пределах от 0° до +90° к зениту и от 0° до −90° к надиру[1]:40.
Зенитным расстояниемz светила называется дуга вертикала светила от зенита до светила. Зенитные расстояния отсчитываются в пределах от 0° до 180° от зенита к надиру.
АзимутомA светила называется дуга математического горизонта от точки юга до вертикала светила. Азимуты отсчитываются в сторону суточного вращения небесной сферы, то есть к западу от точки юга, в пределах от 0° до 360°[1]:41. Иногда азимуты отсчитываются от 0° до +180° к западу и от 0° до −180° к востоку. (В геодезии и навигации азимуты отсчитываются от точки севера[4].)
За сутки звезда (а также в первом приближении — тело Солнечной системы) описывает круг, перпендикулярный оси мира (PP'), которая на широте φ наклонена к математическому горизонту на угол φ. Поэтому она будет двигаться параллельно математическому горизонту лишь при φ равном 90 градусов, то есть на Северном полюсе. Поэтому все звёзды, видимые там, будут незаходящими (в том числе и Солнце на протяжении полугода, см. долгота дня) а их высота h будет постоянной. На других широтах доступные для наблюдений в данное время года звёзды делятся на
заходящие и восходящие[3]:16 (h в течение суток проходит через 0)
Максимальная высота h звезды будет наблюдаться раз в день при одном из двух её прохождений через небесный меридиан — верхней кульминации, а минимальная — при втором из них — нижней кульминации. От нижней до верхней кульминации высота h звезды увеличивается, от верхней до нижней — уменьшается.
В дополнение к плоскости горизонта NESW, отвесной линии ZZ' и оси мира PP' начертим небесный экватор, перпендикулярный к PP' в точке O. Обозначим t — часовой угол светила, δ — его склонение, R — само светило, z — его зенитное расстояние. Тогда горизонтальную и первую экваториальную систему координат свяжет сферический треугольник PZR, называемый первым астрономическим треугольником[1]:68, или параллактическим треугольником[2]:36. Формулы перехода от горизонтальной системы координат к первой экваториальной системе координат имеют следующий вид[5]:18:
Вывод формул перехода
Первый астрономический треугольник, горизонтальная и первая экваториальная системы координат.
Последовательность применения формул сферической тригонометрии к сферическому треугольнику PZR такая же, как при выводе подобных формул для эклиптической системы координат: теорема косинусов, теорема синусов и формула пяти элементов[2]:37. По теореме косинусов имеем:
Первая формула получена. Теперь к тому же сферическому треугольнику применяем теорему синусов:
Вторая формула получена. Теперь применяем к нашему сферическому треугольнику формулу пяти элементов:
Третья формула получена. Итак, все три формулы получены из рассмотрения одного сферического треугольника.
Формулы перехода от первой экваториальной системы координат к горизонтальной системе координат выводятся при рассмотрении того же сферического треугольника, применяя к нему те же формулы сферической тригонометрии, что и при обратном переходе[2]:37. Они имеют следующий вид[5]:17: