Материал из РУВИКИ — свободной энциклопедии

Карбид циркония

Карбид циркония
Изображение молекулярной модели
Zirconium carbide ZrC.jpg
Общие
Систематическое
наименование
монокарбид циркония
Традиционные названия карбид циркония
Хим. формула ZrC
Рац. формула ZrC
Физические свойства
Состояние твёрдое
Молярная масса 103,23 г/моль
Плотность 6,73 г/см³
Термические свойства
Температура
 • плавления 3530 °C
 • кипения 5100 °C
Теплопроводность 11,6 Вт/(м·K)
Энтальпия
 • образования -196,65 кДж/моль
Классификация
Рег. номер CAS 12070-14-3
3D model (JSmol) Интерактивная схема
PubChem
CompTox Dashboard EPA
Рег. номер EINECS 235-125-1
SMILES
InChI
ChemSpider
ECHA InfoCard
Безопасность
NFPA 704
Огнеопасность 0: Негорючее веществоОпасность для здоровья 0: Не представляет опасности для здоровья, не требует мер предосторожности (например, ланолин, пищевая сода)Реакционноспособность 0: Стабильно даже при действии открытого пламени и не реагирует с водой (например, гелий)Специальный код: отсутствуетNFPA 704 four-colored diamond
0
0
0
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Карби́д цирко́нияхимическое соединение металла циркония и углерода с формулой ZrC. Представляет собой фазу внедрения с широкой областью гомогенности, которая составляет от 38,4 до 50 ат. % углерода, что отвечает формуле ZrC0,62 и ZrC1,0 соответственно[1].

Физические свойства

[править | править код]

Карбид циркония представляет собой порошок серого цвета. Имеет кубическую гранецентрированную решётку типа NaCl, пространственная группа Fm3m, с периодом а = 0,4693 нм.

Карбид циркония можно получить одним из следующих способов[3]:

  • Непосредственным насыщением циркония углеродом:

Процесс ведут в вакууме, а исходные компоненты берут в виде порошков;

  • Восстановлением оксида циркония углеродом с последующим образованием карбида:

Процесс идёт через образование низших окислов циркония и последующего образования карбида циркония по реакции:

Этот метод применяется для получения технически чистого карбида циркония в промышленных масштабах. Обычно процесс проводят при температуре около 2000 °C;

  • Осаждением из газовой фазы:

В основе метода лежит реакция:

Осаждение происходит на поверхности вольфрамовой нити, разогретой до температуры 1700—2400 °C. Проведение процесса при высокой температуре (около 2400 °C) позволяет получить монокристаллический осадок. Метан может быть заменён толуолом, бензолом или ацетиленом[4].

Химические свойства

[править | править код]

Карбид циркония является химически стойким соединением при комнатной температуре по отношению к серной, соляной, фосфорной, хлорной, щавелевой кислотам и смесям серной и фосфорной, серной и щавелевой кислот. Не растворяется в 10% и 20% растворах гидроксида натрия. Растворяется в кипящих серной, азотной, хлорной кислотах. Сильно растворяется в царской водке, смесях серной и азотной, азотной и плавиковой кислот[3]. Начиная с 700 °C, карбид циркония взаимодействует с кислородом с образованием ZrO2. При высоких температурах, в присутствии азота, образуются карбонитриды циркония.

Применение

[править | править код]

Высокая температура плавления и малое поперечное сечение захвата нейтронов карбида циркония позволяет применять его как защитное покрытие на графитовых матрицах в твэлах, содержащих карбиды урана и тория. Покрытие из карбида циркония, нанесённое CVD-процессом на диоксид урана, используется как диффузионный барьер от продуктов реакции полураспада ядерного топлива[5]. Композит ZrC-UC используют в термоэлектрогенераторах. Также карбид циркония применяется как абразивный материал для полировки металлов[3].

Примечания

[править | править код]
  1. Самсонов Г. В. Физическое материаловедение карбидов. — Наукова думка, 1974. — С. 107-109. — 454 с.
  2. Самсонов Г. В., Виницкий И. М. Тугоплавкие соединения (справочник). — Металлургия, 1976. — С. 560.
  3. 1 2 3 Косолапова Т. Я. Карбиды. — Металлургия, 1968. — С. 300.
  4. C 233. Современное производство карбида циркония. Галевский Г.В. Дата обращения: 3 августа 2019. Архивировано из оригинала 15 ноября 2017 года.
  5. Effect of Use of Zirconium Carbide Coatings on the VHTR Core Nuclear Design. Дата обращения: 21 апреля 2012. Архивировано из оригинала 16 октября 2011 года.