Модуль Юнга

Мо́дуль Ю́нга (синонимы: модуль продольной упругости, модуль нормальной упругости) — физическая величина, характеризующая способность материала сопротивляться растяжению, сжатию при упругой деформации[1]. Обозначается большой буквой Е. Назван в честь английского физика XIX века Томаса Юнга.

Что важно знать
Модуль Юнга
Размерность L−1MT−2
Единицы измерения
СИ Па
СГС дин·см-2

Определение

В динамических задачах механики модуль Юнга рассматривается в более общем смысле — как функционал деформируемой среды и процесса.

В Международной системе единиц (СИ) измеряется в ньютонах на квадратный метр или в паскалях. Является одним из модулей упругости.

Модуль Юнга рассчитывается следующим образом:

где:

  •  — нормальная составляющая силы,
  •  — площадь поверхности, по которой распределено действие силы,
  •  — длина деформируемого стержня,
  •  — модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина ).

Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

где  — плотность вещества.

Связь с другими модулями упругости

В случае изотропного тела модуль Юнга связан с модулем сдвига и модулем объёмной упругости соотношениями

и

где  — коэффициент Пуассона.

Температурная зависимость модуля Юнга

Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости определяется как вторая производная от внутренней энергии по соответствующей деформации . Поэтому при температурах ( — температура Дебая) температурная зависимость модуля упругости определяется простым соотношением

где  — адиабатический модуль упругости идеального кристалла при ;  — дефект модуля, обусловленный тепловыми фононами;  — дефект модуля, обусловленный тепловым движением электронов проводимости[2].

Значения модуля Юнга для некоторых материалов

Значения модуля Юнга для некоторых материалов приведены в таблице.

Материал модуль Юнга E, ГПа Источник
Алюминий 70 [3]
Бронза 75—125 [3]
Вольфрам 350 [3]
Германий 83 [3]
Графен 1000 [4]
Дюралюминий 74 [3]
Железо 180 [5]
Иридий 520 [3]
Кадмий 50 [3]
Кобальт 210 [3]
Константан 163 [3]
Кремний 109 [3]
Латунь 95 [3]
Лёд 3 [3]
Магний 45 [3]
Манганин 124 [3]
Медь 110 [3]
Никель 210 [3]
Ниобий 155 [6]
Олово 35 [3]
Свинец 18 [3]
Серебро 80 [3]
Серый чугун 110 [3]
Сталь 190—210 [3]
Стекло 70 [3]
Титан 112 [3]
Фарфор 59 [3]
Цинк 120 [3]
Хром 300 [3]

Примечания

Литература

  • Волькенштейн В. С. Сборник задач по общему курсу физики / В. С. Волькенштейн. — СПб.: Лань, 1999. — 328 с.
  • Сивухин Д. В. Общий курс физики. Т. 1. Механика. — М. : Физматлит, 2009.
  • Ландау Л. Д. Курс общей физики : механика и молекулярная физика. — М. : Добросвет : Издательство КДУ, 2011.
  • Золоторевский В. С. Механические свойства металлов : учебник для вузов. — Москва : МИСИС, 1988.

Ссылки