Гладкое многообразие — многообразие, наделенное гладкой структурой.
Гладкие многообразия являются естественной базой для построения дифференциальной геометрии.
На дифференциальных многообразиях вводятся дополнительные инфинитезимальные структуры — касательное пространство, ориентация, метрика, связность и т. д., и изучаются те свойства, связанные с этими объектами, которые инвариантны относительно группы диффеоморфизмов, сохраняющих дополнительную структуру.
Пара , где — указанный гомеоморфизм, называется локальной картой в точке .
Таким образом, каждой точке соответствует набор вещественных чисел , которые называются координатами в карте .
Множество карт называется -атласом многообразия , если:
совокупность всех покрывает , т.е.
для любых таких, что , отображение:
является гладким отображением класса ;
является отображением с отличным от нуля якобианом и называется отображением склейки карты с картой
Два -атласа называются эквивалентными, если их объединение снова образует -атлас.
Совокупность -атласов разбивается на классы эквивалентности, называемые -структурами, при — дифференциальными (или гладкими) структурами.
Топологическое многообразие , наделенное -структурой, называется -гладким многообразием.
Задачи аналитической и алгебраической геометрии приводят к необходимости рассмотрения в определении дифференциальной структуры вместо пространства более общих пространств или даже , где — полное недискретное нормированное поле. Так, в случае рассматриваются голоморфные (аналитические комплексные) -структуры () и соответствующие гладкие многообразия — комплексные многообразия. При этом на любом таком многообразии есть и естественная настоящая аналитическая структура.
На любом аналитическом многообразии существует согласованная с ней -структура, и на -многообразии,, — -структура, если . Наоборот, любое паракомпактное-многообразие, , можно наделить аналитической структурой, совместимой с заданной, причем эта структура (с точностью до изоморфизма) единственная. Может, однако, случиться, что -многообразие нельзя наделить -структурой, а если это удается, то такая структура может быть не единственной. Например, число -неизоморфных -структур на -мерной сфере равно:
Пусть — непрерывное отображение-многообразий ; оно называется -морфизмом (или -отображением, , или отображением класса ) гладких многообразий, если для любой пары карт на X и на Y такой, что и отображение:
принадлежит классу . Биективное отображение , если оно и являются -отображениями, называется -изоморфизмом (или диффеоморфизмом). В этом случае и и их -структуры называются -изоморфными.
Подмножество -мерного -многообразия называется -подмногообразием размерности в , если для произвольной точки существует карта -структуры , такая, что и индуцирует гомеоморфизм с (замкнутым) подпространством ; иными словами, существует карта с координатами , такая, что определяется соотношениями .
Отображение называется -вложением, если является -подмногообразием в , а — -диффеоморфизм.
Любое -мерное -многообразие допускает вложение в , а также в Более того, множество таких вложений является везде плотным в пространстве отображений относительно компактно-открытой топологии.
Тем самым, рассмотрение гладких многообразий как подмногообразий евклидова пространства дает один из способов изучения их теории, этим путём устанавливаются, например, указанные выше теоремы об аналитических структурах.