Внутренняя энергия
| Виды энергии: | ||
|---|---|---|
| Механическая | Потенциальная Кинетическая | |
| ‹♦› | Внутренняя | |
| Электромагнитная | Электрическая Магнитная | |
| Химическая | ||
| Ядерная | ||
| Гравитационная | ||
| Вакуума | ||
| Гипотетические: | ||
| Тёмная | ||
| См. также: Закон сохранения энергии | ||
Вну́тренняя эне́ргия — принятое в физике сплошных сред, термодинамике и статистической физике название для той части полной энергии термодинамической системы, которая не зависит от выбора системы отсчета[1] и которая в рамках рассматриваемой задачи может изменяться[2]. То есть для равновесных процессов в системе отсчета, относительно которой центр масс рассматриваемого макроскопического объекта покоится, изменения полной и внутренней энергии всегда совпадают. Перечень составных частей полной энергии, входящих во внутреннюю энергию, непостоянен и зависит от решаемой задачи. Иначе говоря, внутренняя энергия — это не специфический вид энергии[3], а совокупность тех изменяемых составных частей полной энергии системы, которые следует учитывать в конкретной ситуации.
Внутренняя энергия как специфическое для термических систем понятие, а не просто как термин для обозначения изменяемой части полной энергии, нужна постольку, поскольку с её помощью в физику вводят новые величины: термические (температура и энтропия) и химические (химические потенциалы и массы составляющих систему веществ)[4].
Деление полной энергии системы на потенциальную, кинетическую, внутреннюю и т. д. зависит от формальных определений этих понятий и поэтому достаточно условно[5][K 1][K 2]. Так, иногда во внутреннюю энергию не включают потенциальную энергию, связанную с полями внешних сил[2][9][10]. Важно, что правильность получаемых при решении конкретной задачи результатов зависит от корректности составления уравнения энергетического баланса, а не от терминологических нюансов.
Воспринимаемые органами чувств человека нагрев или охлаждение макроскопического объекта при прочих равных условиях (например, при постоянстве давления) есть проявления изменения внутренней энергии этого объекта: при повышении температуры внутренняя энергия системы увеличивается, а при понижении температуры — уменьшается[11]. Обратное неверно: постоянство температуры объекта не означает неизменность его внутренней энергии (например, температура системы неизменна при фазовых переходах первого рода — плавлении, кипении и др.).
Что важно знать
| Внутренняя энергия | |
|---|---|
| Размерность | L2MT−2 |
| Единицы измерения | |
| СИ | Дж |
| СГС | эрг |
Свойства внутренней энергии
Непосредственно из определения внутренней энергии как части полной энергии вытекает, что
- внутренняя энергия есть индифферентный[12] скаляр, то есть во внутреннюю энергию не входит кинетическая энергия системы как единого целого и кинетическая энергия среды внутри системы (энергия смещения элементарных областей[13] при деформации твёрдых тел и энергия потоков жидкостей и газов в среде);
- внутренняя энергия есть величина аддитивная[5][14], то есть внутренняя энергия системы равна сумме внутренних энергий её подсистем;
- внутренняя энергия задаётся с точностью до постоянного слагаемого, зависящего от выбранного нуля отсчёта и не сказывающегося на экспериментальных замерах изменения внутренней энергии[15].
Составные части внутренней энергии
Термодинамика вопрос о природе внутренней энергии не рассматривает и энергетические превращения (подчас весьма сложные), происходящие внутри системы на микроуровне, не детализирует[16]. В статистической физике во внутреннюю энергию системы включают энергию разных видов движения и взаимодействия входящих в систему частиц: энергию поступательного, вращательного и колебательного движений атомов и молекул, энергию внутри- и межмолекулярного взаимодействия, энергию электронных оболочек атомов и др.[15]
Во внутреннюю энергию не включают те составные части полной энергии, которые не меняются при изменении макроскопического состояния системы. Так, при обычных температурах в состав внутренней энергии не включают энергию атомных ядер, ибо она в этих условиях не меняется[17]. Но если речь идёт о температурах, при которых начинается термический распад атомных ядер, то эту энергию необходимо учитывать.
Энергию системы в поле внешних сил в состав её внутренней энергии не включают при условии, что термодинамическое состояние системы при перемещении в поле этих сил не изменяется[15][18]. При изменении состояния системы под действием внешних полей во внутреннюю энергию системы включают потенциальную энергию системы в этих полях (гравитационном, электромагнитном)[19][20].
Влияние поля тяготения на внутреннюю энергию термодинамической системы учитывают тогда, когда высота рассматриваемого столба газа (жидкости) значительна, например, при анализе состояния атмосферы[20].
Так как поверхность тела растет пропорционально квадрату размеров этого тела, а объём — пропорционально кубу этих размеров, то для больших тел поверхностными эффектами по сравнению с объёмными можно пренебречь[21]. Однако для дисперсных систем с развитыми поверхностями раздела между жидкими, твердыми и газообразными фазами (адсорбенты и микрогетерогенные системы: коллоидные растворы, эмульсии, туманы, дымы) пренебрежение поверхностными эффектами недопустимо, более того, они определяют многие своеобразные свойства таких систем и для них энергию поверхностных слоёв на границах раздела фаз (поверхностную энергию) учитывают как часть внутренней энергии[22].
При решении задач, требующих учёта кинетической энергии (физика сплошных сред, техническая и релятивистская термодинамика), оперируют полной энергией, совместно рассматривая законы сохранения массы, энергии, заряда, законы механики и законы термодинамики[23].
Внутренняя энергия в равновесной термодинамике
В термодинамику внутреннюю энергию ввёл Р. Клаузиус (1850), не озаботившийся присвоением специального наименования «функции », использованной учёным в математической формулировке первого начала (закона) термодинамики[24][25][26][27] [K 3]; впоследствии Клаузиус называл функцию просто «энергией»[31][32]. У. Томсон (лорд Кельвин) (1851) в статье «О динамической теории теплоты»[33] дал этой новой физической величине принятую доныне трактовку[26][2] и название «механическая энергия»[33][25][32][K 4]. Термин «внутренняя энергия (internal energy)» принадлежит У. Ренкину[39][40].
Первое начало (закон) термодинамики представляет собой конкретизацию общефизического закона сохранения энергии для термодинамических систем. В рамках традиционного подхода первое начало формулируют как соотношение, устанавливающее связь между внутренней энергией, работой и теплотой: одна из этих физических величин задаётся с помощью двух других, которые, будучи исходными объектами теории, в рамках самой этой теории определены быть не могут просто потому, что не существует понятий более общих, под которые можно было бы подвести подлежащие определению термины[41]. В соответствии с интерпретацией У. Томсона первое начало трактуют как дефиницию внутренней энергии для закрытых систем[33][42][2]. А именно, изменение внутренней энергии термодинамической системы в каком-либо процессе полагают равным алгебраической сумме количества теплоты , которой система обменивается в ходе процесса с окружающей средой, и работы , совершённой системой или произведённой над ней[2]:
| (Первое начало в формулировке Томсона) |
В этом выражении использовано «термодинамическое правило знаков для теплоты и работы».
Термодинамика заимствует понятия энергии и работы из других разделов физики, тогда как определение количеству теплоты, наоборот, даётся только и именно в термодинамике. По этой причине логичнее сразу трактовать первое начало так, как это делали Клаузиус[31] и его последователи, а именно, как определение теплоты через внутреннюю энергию и работу[43][44]. С использованием «теплотехнического правила знаков для теплоты и работы» математическое выражение для первого начала в формулировке Клаузиуса имеет вид:
| (Первое начало в формулировке Клаузиуса) |
При использовании термодинамического правила знаков для теплоты и работы знак у меняется на противоположный: [K 5].
Первое начало в формулировке Томсона вводит внутреннюю энергию как физическую характеристику системы, поведение которой определяется законом сохранения энергии, но не определяет эту величину как математический объект, то есть функцию конкретных параметров состояния[45]. Альтернативное определение внутренней энергии предложено К. Каратеодори (1909), который сформулировал первое начало термодинамики в виде аксиомы о существовании внутренней энергии — составной части полной энергии системы — как функции состояния, зависящей для простых систем[46] от объёма системы , давления и масс составляющих систему веществ , , …, , …[47]:
| (Первое начало в формулировке Каратеодори) |
Важно, что данное определение внутренней энергии справедливо для открытых систем[48]. В формулировке Каратеодори внутренняя энергия не представляет собой характеристическую функцию своих независимых переменных.
В аксиоматической системе Л. Тиссы набор постулатов термодинамики дополнен утверждением о том, что внутренняя энергия ограничена снизу, и что эта граница соответствует абсолютному нулю температуры[49].
Внутренняя энергия системы есть однозначная, непрерывная и ограниченная функция состояния системы[3]. Для определённости полагают внутреннюю энергию ограниченной снизу. За начало отсчёта внутренней энергии принимают её значения при абсолютном нуле температуры[50]. Уравнение, выражающее функциональную зависимость внутренней энергии от параметров состояния, носит название калорического уравнения состояния[51][52]. Для простых однокомпонентных систем калорическое уравнение связывает внутреннюю энергию с любыми двумя из трёх параметров то есть имеется три калорических уравнения состояния:
| (Калорическое уравнение состояния с независимыми переменными T и V) |
| (Калорическое уравнение состояния с независимыми переменными T и p) |
| (Калорическое уравнение состояния с независимыми переменными V и p) |
Выбор независимых переменных для калорического уравнения состояния, теоретически не имеющий принципиального значения, важен с практической точки зрения: удобнее иметь дело с непосредственно измеримыми величинами типа температуры и давления.
Применение термодинамики для решения практических задач часто требует знания параметров, конкретизирующих свойства изучаемого объекта, то есть требуется математическая модель системы, с необходимой точностью описывающая её свойства. К таким моделям, называемым в термодинамике уравнениями состояния, относятся термическое и калорическое уравнения состояния. Для каждой конкретной термодинамической системы её уравнения состояния устанавливают по экспериментальным данным или находят методами статистической физики, и в рамках термодинамики они считаются заданными при определении системы[53]. Если для системы известны её термическое и калорическое уравнения состояния, то тем самым задано полное термодинамическое описание системы и можно вычислить все её термодинамические свойства[52].
В рамках термодинамики абсолютное значение внутренней энергии найдено быть не может, поскольку она задаётся с точностью до аддитивной постоянной. Экспериментально можно определить изменение внутренней энергии, а неопределённость, обусловленную аддитивной постоянной, устранить выбором стандартного состояния в качестве состояния отсчёта[54]. С приближением температуры к абсолютному нулю внутренняя энергия становится независимой от температуры и приближается к определённому постоянному значению, которое может быть принято за начало отсчёта внутренней энергии[50].
С метрологической точки зрения нахождение изменения внутренней энергии есть косвенное измерение, поскольку это изменение определяют по результатам прямых измерений других физических величин, функционально связанных с изменением внутренней энергии. Основная роль при этом отводится определению температурной зависимости теплоёмкости системы. Действительно, дифференцируя калорическое уравнение состояния, получаем[55]:
Здесь — теплоёмкость системы при постоянном объёме; — изобарный коэффициент объёмного расширения; — изотермический коэффициент объёмного сжатия. Интегрируя это соотношение, получаем уравнение для вычисления изменения внутренней энергии по данным экспериментальных измерений:
где индексы 1 и 2 относятся к начальному и конечному состоянию системы. Для вычисления изменения внутренней энергии в изохорных процессах достаточно знать зависимость теплоёмкости от температуры:
| (Изменение внутренней энергии в изохорном процессе) |
Из уравнения Клапейрона — Менделеева следует, что внутренняя энергия идеального газа зависит от его температуры и массы и не зависит от объёма[56] (закон Джоуля)[57][58]:
| (Закон Джоуля) |
Для классического (неквантового) идеального газа статистическая физика даёт следующее калорическое уравнение состояния[53]:
| (Внутренняя энергия идеального газа) |
где — масса газа, — молярная масса этого газа, — универсальная газовая постоянная, а коэффициент равен 3/2 для одноатомного газа, 5/2 для двухатомного и 3 для многоатомного газа; за начало отсчёта, которому присвоено нулевое значение внутренней энергии, принято состояние идеальногазовой системы при абсолютном нуле температуры. Из данного уравнения следует, что внутренняя энергия идеального газа аддитивна по массе[14].
Каноническое уравнение состояния для внутренней энергии, рассматриваемой как характеристическая функция энтропии и объёма имеет вид[59]:
| (Каноническое уравнение состояния для внутренней энергии) |
где — теплоёмкость при постоянном объёме, равная для одноатомных газов, для двухатомных и для многоатомных газов; — безразмерная величина, численно совпадающая со значением в используемой системе единиц измерения; — показатель адиабаты, равный для одноатомных газов, для двухатомных и для многоатомных газов.
В термодинамике равновесное тепловое излучение рассматривают как фотонный газ, заполняющий объём . Внутренняя энергия такой системы безмассовых частиц, даваемая законом Стефана — Больцмана, равна[60]:
| (Внутренняя энергия фотонного газа) |
где — постоянная Стефана — Больцмана, — электродинамическая постоянная (скорость света в вакууме). Из этого выражения следует, что внутренняя энергия фотонного газа аддитивна по объёму[14].
Каноническое уравнение состояния для внутренней энергии фотонного газа имеет вид[61]:
| (Каноническое уравнение состояния для внутренней энергии фотонного газа) |
Внутренняя энергия в физике сплошных сред
В физике сплошных сред, составной частью которой является неравновесная термодинамика, оперируют полной энергией среды, рассматривая её как сумму кинетической и внутренней энергии среды . Кинетическая энергия сплошной среды зависит от выбора системы отсчета, а внутренняя энергия — нет [1]. Образно говоря, внутренняя энергия элементарного тела[13] среды как бы «вморожена» в элементарный объём и перемещается вместе с ним, а кинетическая энергия связана с движением внутри непрерывной среды. Для внутренней энергии принимают справедливость всех соотношений, даваемых для неё равновесной термодинамикой в локальной формулировке[62].
Комментарии
Примечания
Литература
- Clausius R. Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen (Anfang des Artikels) (нем.) // Annalen der Physik und Chemie. — 1850. — Bd. 79, Nr. 3. — S. 368—397.
- Clausius R. Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen (Ende des Artikels) (нем.) // Annalen der Physik und Chemie. — 1850. — Bd. 79, Nr. 4. — S. 500—524.
- Clausius R. Abhandlungen über die mechanische Wärmetheorie. Erste Abtheilung. — Braunschweig: Druck und Verlag von Friedrich Vieweg und Sohn, 1864. — xviii + 351 S.
- Clausius R. Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie (нем.) // Annalen der Physik und Chemie. — 1865. — Bd. 125, Nr. 7. — S. 353—400.
- Clausius R. Die mechanische Wärmetheorie. Band 1. — 3 Auflage. — Braunschweig: Druck und Verlag von Friedrich Vieweg und Sohn, 1887. — xvi + 403 S.
- Kirchhoff Gustav. Vorlesungen über mathematische Physik. Band IV. Theorie der Wärme (нем.). — Leipzig: Verlag von B. J. Teubner, 1894. — x + 210 S.
- Rankine W.J.M. A manual applied mechanics. — 6 ed. — London: Charles Griffin and company, 1872. — XVI + 648 с.
- Thomson William. Mathematical and Physical Papers. Volume 1. — Cambridge: The Cambridge University Press, 1882. — xii + 558 p.
- Tisza Laszlo. Generalized Thermodynamics. — Cambridge (Massachusetts) — London (England): The M.I.T. Press, 1966. — 384 с.
- Базаров И. П. Термодинамика. — 5-е изд. — СПб. — М. — Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3.
- Башкиров А. Г. Внутренняя энергия // Большая российская энциклопедия. — Большая Российская энциклопедия, 2006. — Т. 5. — С. 476.
- Березин Ф. А. Лекции по статистической физике / Под ред. Д. А. Лейтеса. — М.: МЦНМО, 2008. — 197 с. — ISBN 978-5-94057-352-4.
- Борн М. Критические замечания по поводу традиционного изложения термодинамики // Развитие современной физики / Отв. ред. Б. Г. Кузнецов. — М.: Наука, 1964. — С. 223—256.
- Булер П. Физико-химическая термодинамика вещества. — СПб.: Янус, 2001. — 192 с. — ISBN 5-9276-0011-5.
- Гельфер Я. М. История и методология термодинамики и статистической физики. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1981. — 536 с.
- Герасимов Я. И., Древинг В. П., Еремин Е. Н. и др. Курс физической химии / Под общ. ред. Я. И. Герасимова. — 2-е изд. — М.: Химия, 1970. — Т. I. — 592 с.
- Гиббс Дж. В. Термодинамика. Статистическая механика / Отв. ред. Д. Н. Зубарев. — М.: Наука, 1982. — 584 с. — (Классики науки).
- Глаголев К. В., Морозов А. Н. Физическая термодинамика. — 2-е изд., испр. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2007. — 270 с. — (Физика в техническом университете). — ISBN 978-5-7038-3026-0.
- Глазов В. М. Основы физической химии. — М.: Высшая школа, 1981. — 456 с.
- Гуггенгейм. Современная термодинамика, изложенная по методу У. Гиббса / Пер. под ред. проф. С. А. Щукарева. — Л. — М.: Госхимиздат, 1941. — 188 с.
- Дырдин В. В., Мальшин А. А., Янина Т. И., Ёлкин И. С. Термодинамика: Учебное пособие. — Кемерово: Изд-во КузГТУ, 2005. — 148 с. — ISBN 5-89070-482-6.
- Дьярмати И. Неравновесная термодинамика. Теория поля и вариационные принципы. — М.: Мир, 1974. — 304 с.
- Жилин П. А. Рациональная механика сплошных сред. — 2-е изд. — СПб.: Изд-во Политехн. ун-та, 2012. — 584 с. — ISBN 978-5-7422-3248-3.
- Зубарев Д. Н. Внутренняя энергия // Физическая энциклопедия. — Советская энциклопедия, 1988. — Т. 1. — С. 292.
- Каратеодори К. Об основах термодинамики // Развитие современной физики. — Наука, 1964.
- Карно С., Клаузиус, Р., Томсон У. (лорд Кельвин) и др. Второе начало термодинамики / Под ред. А. К. Тимирязева. — 4-е изд. — М.: Либроком, 2012. — 312 с. — (Физико-математическое наследие: физика (термодинамика и статистическая механика)). — ISBN 978-5-397-02688-8.
- Квасников И. А. Термодинамика и статистическая физика. Т. 1: Теория равновесных систем: Термодинамика. — 2-е изд., сущ. перераб. и доп. — М.: Едиториал УРСС, 2002. — 240 с. — ISBN 5-354-00077-7.
- Кричевский И. Р. Понятия и основы термодинамики. — 2-е изд., пересмотр. и доп. — М.: Химия, 1970. — 440 с.
- В. И. Крутов, Исаев С. И., Кожинов И. А. и др. Техническая термодинамика / Под. ред. В. И. Крутова. — 3-е изд., перераб. и доп. — М.: Высшая школа, 1991. — 384 с. — ISBN 5-06-002045-2.
- Кубо Р. Термодинамика. — М.: Мир, 1970. — 304 с.
- Лопаткин А. А. Внутренняя энергия // Большая советская энциклопедия, 3-е изд. — Советская энциклопедия, 1971. — Т. 5. — С. 167.
- Мюнстер А. Химическая термодинамика / Пер. с нем. под. ред. чл.-корр. АН СССР Я. И. Герасимова. — 2-е изд., стер. — М.: УРСС, 2002. — 296 с. — ISBN 5-354-00217-6.
- Пальмов В. А. Фундаментальные законы природы в нелинейной термомеханике деформируемых тел. — СПб.: Изд-во СПбГПУ, 2008. — 143 с.
- Полторак О. М. Термодинамика в физической химии. — М.: Высшая школа, 1991. — 320 с. — ISBN 5-06-002041-X.
- Пуанкаре А. О науке / Пер. с фр. Под ред. Л. С. Понтрягина. — 2-е изд., стер. — М.: Наука, 1990. — 736 с. — ISBN 5-02-014328-6.
- Путилов К. А. Термодинамика / Отв. ред. М. Х. Карапетьянц. — М.: Наука, 1971. — 376 с.
- Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. — 5-е изд., испр. — М.: ФИЗМАТЛИТ, 2005. — 544 с. — ISBN 5-9221-0601-5.
- Сычёв В. В. Сложные термодинамические системы. — 5-е изд., перераб. и доп.. — М.: Издательский дом МЭИ, 2009. — 296 с. — ISBN 978-5-383-00418-0.
- Фейнман Р. Ф., Лейтон Р. Б., Сэндс М. Фейнмановские лекции по физике. Вып. 1, 2. Современная наука о природе. Законы механики. Пространство. Время. Движение / Пер. с англ. под ред. Я. А. Смородинского. — 8-е изд., сущ. испр. — М.: УРСС; Либроком, 2011. — 439 с. — ISBN 978-5-453-00021-0 (УРСС), 978-5-397-02133-3 (Либроком).
- Физика. Большой энциклопедический словарь / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1998. — 944 с. — ISBN 5-85270-306-0.
- Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Длинные. — 704 с.
- Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1998. — Т. 5: Стробоскопические приборы — Яркость. — 760 с. — ISBN 5-85270-101-7.
- Хазен А. М. Разум природы и разум человека. — М.: РИО «Мособлполиграфиздата»; НТЦ «Университетский», 2000. — 600 с. — ISBN 5-7953-0044-6.
- Хачкурузов Г. А. Основы общей и химической термодинамики. — М.: Высшая школа, 1979. — 268 с.
- Химическая энциклопедия / Гл. ред. Н. С. Зефиров. — М.: Большая Российская энциклопедия, 1995. — Т. 4: Пол — Три. — 640 с. — ISBN 5-85270-092-4.
- Шамбадаль П. Развитие и приложение понятия энтропии / Пер. с франц. — М.: Наука, 1967. — 279 с.


