Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 мая 2022 года; проверки требуют 13 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 мая 2022 года; проверки требуют 13 правок.
Аналитика
Анали́тика (др.-греч.άναλυτικά, букв. — «искусствоанализа») — часть искусства рассуждения — логики, рассматривающая учение об анализе — операции мысленного или реального расчленения целого (вещи, свойства, процесса или отношения между предметами) на составные части, выполняемая в процессе познания или предметно-практической деятельности человека[1].
В узком смысле (англ.Analytics)— систематический численный анализ данных для выявления и интерпретации значимых закономерностей[2]. Применяется в областях, для которых характерно обилие накопленной информации. Опирается на одновременное применение статистики, компьютерного программирования и исследования операций. Аналитика разделяется на описательную, диагностическую, прогнозную, предписывающую и когнитивную[3]. Может применяться в таких областях бизнеса как маркетинг, управление, финансы, информационная безопасность и программное обеспечение. Для обработки больших данных алгоритмы аналитики, используют методы информатики, статистики и математики[4].
Ещё в IV веке до нашей эры, ученик Платона, древнегреческий философ Аристотель в своём «Органоне» назвал два известных своих сочинения по логике словом «Аналитика» («Первая Аналитика» и «Вторая Аналитика»[5]), так как они разлагают логическое мышление на простейшие элементы и затем от них переходят к сложным формам мышления. Будучи основателем формальной логики как науки, Аристотель называл её «аналитика», термин же «логика» прочно вошёл в обиход уже после его смерти в III веке до нашей эры[6].
Демографические исследования, сегментация клиентов, совместный анализ и другие методы позволяют маркетологам использовать большие объемы информации о покупках и данные опросов клиентов для формирования маркетинговой стратегии[11].
Маркетинговая аналитика состоит как из качественных, так и из количественных, структурированных и неструктурированных данных, используемых для принятия стратегических решений о бренде и доходах. Этот процесс включает прогнозное моделирование, маркетинговые эксперименты, автоматизацию и коммуникации в режиме реального времени. Такие данные позволяют компаниям делать прогнозы и формировать стратегию для достижения максимальных результатов[11].
Веб-аналитика позволяет маркетологам собирать информацию о действиях на веб-сайте с помощью операции, называемой сеансом. Google Analytics — пример популярного бесплатного инструмента веб-аналитики[12][13] . С помощью этой информации маркетолог может оптимизировать маркетинговые кампании и контент веб-сайта архитектуру[14].
Методы анализа, часто используемые в маркетинге, включают моделирование маркетингового комплекса, анализ ценообразования и продвижения, оптимизацию торгового персонала и клиентскую аналитику, например: сегментацию. Веб-аналитика и оптимизация веб-сайтов и онлайн-кампаний дополняют традиционные методы маркетингового анализа.
Этот раздел аналитики также известен как HR-аналитика, аналитика талантов, аналитика человеческого капитала HRIS (Human resource Information system). HR-аналитика — это приложение аналитики к управлению человеческими ресурсами[15]. HR-аналитика стала стратегическим инструментом анализа и прогнозирования тенденций, связанных с персоналом на меняющихся рынках труда. Соответствующий класс инструментов известен как Career Analytics tools[16][17]. Широко применяются также автоматизированные системы управления персоналом. Существует мнение, что в XXI в. настала «эпоха данных и HR-аналитики»[18].
Распространенным применением бизнес-аналитики является портфельный анализ . Как правило, банк или кредитное агентство имеет набор клиентских счетов различной стоимости и риска. Счета могут различаться по социальному статусу владельца, географическому положению, чистой стоимости и другим параметрам. Кредитор должен сбалансировать прибыль по кредиту с риском дефолта. При этом возникает вопрос, как оценить портфель в целом[19].
Прогностические модели в банковской сфере разрабатываются для обеспечения оценок риска для отдельных клиентов. Для оценки кредитоспособности заявителей широко используются кредитные баллы[20] Кроме того, анализ рисков используется в страховой индустрии[21].
Аналитика в области безопасности относится к информационным технологиям для сбора сведений об угрозах безопасности с целью выявления событий, представляющие наибольший риск[22]. Продукты в этой области включают информацию о безопасности, управление событиями и аналитику поведения пользователей.
Особое внимание в задачах аналитики уделяется анализу больших данных[23]. В прошлом большие данные встречались только в науке. В настоящее время такие данные возникают и в промышленности и бизнесе[24][23].
Еще одна проблема, привлекающая внимание аналитиков это анализ неструктурированных типов данных. Неструктурированные данные отличаются от структурированных тем, что их формат широко варьируется и не может храниться в традиционных реляционных базах данных без значительного преобразования[25]. Источники неструктурированных данных, такие как электронная почта, документы текстовых процессоров, PDF-файлы, геопространственные данные и т. д., быстро становятся важным источником бизнес-аналитики для предприятий, правительств и университетов[26][27].
Вышеуказанные задачи привели к возникновению новых концепций машинного анализа, таких как обработка сложных событий[28], полнотекстовый поиск и др. Одним из таких нововведений является применение вычислительных сетей, позволяющих увеличить производительность за счет массивно-параллельной обработки данных[29].
Дэйв Миллнер, Надим Хан. HR-аналитика. Практическое руководство по работе с персоналом на основе больших данных = Introduction to People Analytics: A practical guide to data-driven HR. — М.: Альпина Паблишер , 2022. — 384 с. — ISBN 978-5-9614-7831-0.