У этого термина существуют и другие значения, см. сегмент.
Пример сферического сегмента (окрашен синим цветом). Вторая половина сферы также представляет собой сферический сегмент
Сфери́ческий сегме́нт — поверхность, часть сферы, отсекаемая от неё некоторой плоскостью. Плоскость отсекает два сегмента: меньший сегмент называется также сферическим кругом[1].
Если секущая плоскость проходит через центр сферы, то высота обоих сегментов равна радиусу сферы, и каждый из таких сферических сегментов называют полусферой.
Шарово́й сегме́нт — геометрическое тело, часть шара, отсекаемая от него некоторой плоскостью. Поверхностью шарового сегмента является объединение сферического сегмента и круга (основания шарового сегмента), границы которых совпадают.
Если радиус основания сегмента равен , высота сегмента равна , тогда объём шарового сегмента равен [2]
площадь поверхности сегмента равна
или
Параметры , и связаны соотношениями
Подстановка последнего выражения в первую формулу для вычисления площади приводит к равенству
Заметим, что в верхней части сферы (синий сегмент на рисунке) в нижней части сферы следовательно, для обоих сегментов справедливо выражение и можно привести другое выражение для объёма:
Формула для определения объёма также может быть получена при интегрировании поверхности вращения:
Объём объединения и пересечения двух пересекающихся сфер[править | править код]
Объём объединения двух сфер радиусов r1 и r2 равен
[3]
,
где
является суммой объёмов двух сфер по отдельности, а
является суммой объёмов двух сферических сегментов, образующих пересечение данных сфер. Пусть d < r1 + r2 — расстояние между центрами сфер, тогда исключение величин h1 и h2 приводит к выражению [4][5]
Площадь поверхности, ограниченной кругами разных широт[править | править код]
Площадь поверхности, ограниченной кругами разных широт, является разностью площадей поверхности двух соответствующих сферических сегментов. Для сферы радиуса r и широт φ1 и φ2 данная площадь равна [6]
Участок, вырезанный на сфере радиуса r четырьмя дугами больших кругов, имеющими одинаковую угловую длину θ и попарно перпендикулярными (сферический квадрат, аналог квадрата на плоскости), имеет площадь
Если угол θ мал (по сравнению с 1 радианом), то справедливо приближённое равенство, основывающееся на приближении при
Например, площадь квадратного участка поверхности Земли (R⊕ = 6378 км) со сторонами, равными 1 градусу, составляет
1 квадратная секунда поверхности Земли имеет площадь в 36002 раз меньше: A(1′′) ≈ 12 391 км2 / (60 · 60)2 ≈ 956 м2.
Сфероидальный сегмент получается при отсечении части сфероида таким образом, что она обладает круговой симметрией (обладает осью вращения). Аналогичным образом определяют эллипсоидальный сегмент.
Выражение для объёма можно переписать в терминах объёма единичного -мерного шара и гипергеометрической функции или регуляризованной неполной бета-функции как
Формула для площади поверхности может быть записана в терминах площади поверхности единичного -мерного шара как
↑Pavani R., Ranghino G. A method to compute the volume of a molecule (англ.) // Comput. Chem. — 1982. — Vol. 6. — P. 133—135. — doi:10.1016/0097-8485(82)80006-5.
↑Donaldson S. E., Siegel S. G.Successful Software Development. — 2nd ed.. — Upper Saddle River: Prentice Hall, Inc., 2001. — С. 354. — ISBN 0-13-086826-4.
↑Li S. Concise Formulas for the Area and Volume of a Hyperspherical Cap (англ.) // Asian J. Math. Stat. — 2011. — Vol. 4, no. 1. — P. 66—70. — doi:10.3923/ajms.2011.66.70.