Подход Тарского, в отличие от более распространённых аналогов (см. статью Вещественные числа), содержит всего 9 аксиом, связывающих четыре примитивных понятия[3].
Следует отметить,что аксиоматика Тарского использует логику не первого, а второго порядка, что также выделяет её среди аналогов. Краткость аксиоматики достигнута благодаря использованию неортодоксальных вариантов стандартных алгебраических аксиом и других тонких приёмов (см., например, аксиомы 5 и 6, которые объединяют обычные четыре аксиомы абелевых групп). Кроме того, компактность перечня аксиом вызывает необходимость утомительного доказательства длинного списка теорем, которые «доводят» теорию до практически пригодного уровня[4].
(закон плотности порядка): если x < z, то существует y такое, что x < y и y < z.
(аксиома непрерывности Дедекинда): для любых подмножеств X, Y ⊆ R, если x < y для любых x ∈ X и y ∈ Y, то существует элемент z такой, что для всяких x ∈ X и y ∈ Y выполняется свойство: если z ≠ x и z ≠ y, то x < z и z < y.
Последняя аксиома наглядно означает, что если все элементы множества X расположены на числовой оси левее, чем все элементы множества Y, то существует хотя бы одно вещественное число между этими множествами. Именно эта аксиома, содержащая два квантора по подмножествам, заставляет отнести аксиоматику Тарского не к первому, а ко второму порядку логики. Использование аксиомы непрерывности позволяет (после определения умножения) ввести сначала рациональные числа[5], а затем — произвольные вещественные как дедекиндовы сечения[2].
Аксиомы сложения
x + (y + z) = (x + z) + y.
(возможность вычитания): для любых x, y существует такое z, что x + z = y. Одно из следствий этой аксиомы — существование нуля как решения уравнения 1 + x = 1.
Тарский, Альфред. Введение в логику и методологию дедуктивных наук = Introduction to Logic and the Methodology of Deductive Sciences. — М.: Государственное издательство иностранной литературы, 1948. — 327 с.