Пётр Михайлович Чумаков (род. 3 мая1951, Москва) — советский и российский молекулярный биолог и вирусолог, специалист в области молекулярной биологии рака, член-корреспондент РАН (2019).
Представитель династии, много десятилетий занимающейся вопросами фундаментальной и прикладной биологии и медицины. Сын выдающихся вирусологов М. П. Чумакова и М. К. Ворошиловой, по материнской линии правнук К. В. Ворошилова, брат К. М. Чумакова.
В 1968 году поступил в 1 Московский медицинский институт который окончил с отличием в 1974 году. В студенческие годы стажировался в лаборатории профессора В. И. Агола в институте полиомиелита и вирусных энцефалитов АМН СССР.
В 1979 году защитил диссертацию кандидата биологических наук «Транскрипция вирусного генома в клетках трансформированных обезьяньим вирусом 40»[3].
В 1989 году защитил диссертацию доктора биологических наук «Структурно-функциональный анализ онкобелка р53»[4].
В 1984 и 1989 годах вёл научные исследования в исследовательском институте фонда им. Мари Кюри в Великобритании.
С 1987 по 1992 год совместно с С. А. Недоспасовым руководил временным научным коллективом «Экспрессия эукариотических генов» в ИМБ РАН.
С 2001 по 2012 год руководил лабораторией в Отделе молекулярной генетики Лернеровского исследовательского института Кливлендской клиники (Lerner Research Institute), являлся профессором Кейсовского университета Западного резервного района (Case Western Reserve University) в Кливленде, одновременно продолжая руководить лабораторией в ИМБ РАН.
С 2013 года продолжает работу по созданию технологий терапии онкологических заболеваний с помощью онколитических вирусов в ИМБ РАН.
С 2019 года — член-корреспондент РАН.
В 2024 году Петр Михайлович был удостоен Государственной премии Российской Федерации в области науки и технологий за 2023 год. Награда была присуждена за серию фундаментальных и прикладных исследований функций гена основного опухолевого супрессора (белок, не допускающий онкологическую трансформацию клетки) p53 в нормальных и патологических условиях[9].
Провёл цикл исследований, которые значительно повлияли на развитие биологической науки и способствовали созданию новых методов лечения опухолевых заболеваний[10].
В 1982 году первым клонировал ген p53[11],[12], центральный супрессор злокачественного роста. На протяжении последующих 30 лет внёс существенный вклад в изучение функции гена р53 и его роли в канцерогенезе и физиологии организма. В частности, с помощью in vitro мутагенеза установил, что мутации способны превращать р53 в доминантный онкоген[13]. Изучая природные мутантные формы гена р53 выделенные из опухолевых клеток установил их способность усиливать клеточную автономию и устойчивость к противораковой терапии[14],[15],[16],[17]. Установил роль р53 в поддержании гомеостаза и контроле обмена веществ при физиологических нагрузках[18],[19],[20],[21]. Разработал перспективные прототипы новых противораковых препаратов, направленных на восстановление функций гена р53 в клетках опухолей[22],[23]. Начиная с 2010 года основным направлением работ является изучение механизмов вирусного онколиза и разработка подходов к терапии рака с помощью онколитических вирусов[24],[25],[26],[27] . В руководимой им лаборатории созданы панели онколитических вирусов которые предназначены для персонализированной терапии рака.
Автор более 250 научных работ, монографий и патентов. Под его руководством защищено 28 кандидатских и докторских диссертаций.
Член редколлегии журнала «Молекулярная биология».
Во время коронавирусной пандемии активно комментировал и высказывал своё мнение о возбудителе заболевания, его возможном происхождении, прогнозе распространения и течения заболевания. Допускает рукотворное происхождение SARS-CoV-2, а также его менее патогенного варианта «Омикрон»[28]. Высказал предположение, что высоко заразный Омикрон может сыграть роль «живой вакцины», быстро сформировав коллективный иммунитет, способный остановить пандемию ,[29]. Считает, что, поскольку современный технологический уровень позволяет создавать патогенные варианты вирусов с пандемическим потенциалом, необходимо серьёзно относиться к угрозам появления новых опасных вирусных патогенов. Как противодействие таким, угрозам предлагал использование интерфероногенных живых энтеровирусных вакцин (ЖЭВ)[30], которые были разработаны и испытаны ещё в СССР как средство для экстренной неспецифической профилактики гриппа и других ОРВИ[31].
↑Йоцова, В. С., Чумаков, П. М., Георгиев, Г. П. (1982). Выделение плазмидного клона содержащего последовательности мРНК для невирусного Т-антигена мыши. Доклады АН СССР, 267(5), 1272—1275. PMID6295732
↑Jenkins, J. R., Rudge, K., Chumakov, P., Currie, G. A. (1985). The cellular oncogene p53 can be activated by mutagenesis. Nature, 317(6040), 816—818. PMID3903515doi:10.1038/317816a0
↑Khramtsova, S., Stromskaya, T., Potapova, G., Chumakov, P., and Kopnin, B. (1993). Human p53, mutated at codon 273, causes distinct effects on nucleotide biosynthesis salvage pathway key enzymes in Rat-1 cells and in their derivatives expressing activated ras oncogene. Biochem Biophys Res Commun 194, 383—390.PMID8590759
↑ Kopnin, B. P., Stromskaya, T .P., Kondratov, R. V., Ossovskaya, V. S., Pugacheva, E. N., Rybalkina, E. Y., Khokhlova, O. A., and Chumakov, P. M. (1995). Influence of exogenous ras and p53 on P-glycoprotein function in immortalized rodent fibroblasts. Oncol Res 7, 299—306.PMID8527864
↑ Pugacheva, E. N., Ivanov, A. V., Kravchenko, J. E., Kopnin, B. P., Levine, A. J., and Chumakov, P. M. (2002). Novel gain of function activity of p53 mutants: activation of the dUTPase gene expression leading to resistance to 5-fluorouracil. Oncogene 21, 4595-4600. PMID12096336
↑ Ossovskaya, V. S., Mazo, I. A., Chernov, M. V., Chernova, O. B., Strezoska, Z., Kondratov, R., Stark, G. R., Chumakov, P. M., and Gudkov, A. V. (1996). Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. Proc Natl Acad Sci U S A 93, 10309-10314.PMID8816796
↑ Budanov, A. V., Sablina, A. A., Feinstein, E., Koonin, E. V., and Chumakov, P. M. (2004). Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304, 596—600.PMID15105503
↑Sablina, A. A., Budanov, A. V., Ilyinskaya, G. V., Agapova, L. S., Kravchenko, J. E., and Chumakov, P. M. (2005). The antioxidant function of the p53 tumor suppressor. Nat Med 11, 1306—1313.PMID16286925
↑Kopnin, P. B., Agapova, L. S., Kopnin, B. P., and Chumakov, P. M. (2007). Repression of sestrin family genes contributes to oncogenic Ras-induced reactive oxygen species up-regulation and genetic instability. Cancer Res 67, 4671-4678.PMID17510393
↑Olovnikov, I. A., Kravchenko, J. E., and Chumakov, P. M. (2009). Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Seminars in cancer biology 19, 32-41.PMID2646792
↑Bykov, V. J., Issaeva, N., Shilov, A., Hultcrantz, M., Pugacheva, E., Chumakov, P., Bergman, J., Wiman, K. G., and Selivanova, G. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8, 282—288PMID11875500
↑Kravchenko, J. E., Ilyinskaya, G. V., Komarov, P. G., Agapova, L. S., Kochetkov, D. V., Strom, E., Frolova, E. I., Kovriga, I., Gudkov, A. V., Feinstein, E., Chumakov, P. M. (2008). Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci U S A 105, 6302-6307.PMID18424558
↑ Svyatchenko, V. A., Ternovoy, V. A., Kiselev, N. N., Demina, A. V., Loktev, V. B., Netesov, S. V., and Chumakov, P. M. (2017). Bioselection of coxsackievirus B6 strain variants with altered tropism to human cancer cell lines. Arch Virol 162, 3355-3362.PMID28766058
↑ Matveeva, O. V., Guo, Z. S., Senin, V. M., Senina, A. V., Shabalina, S. A., and Chumakov, P. M. (2015). Oncolysis by paramyxoviruses: preclinical and clinical studies. Molecular therapy oncolytics 2, 150017.PMID26640815
↑ Lipatova, A. V., Soboleva, A. V., Gorshkov, V. A., Bubis, J. A., Solovyeva, E. M., Krasnov, G. S., Kochetkov, D. V., Vorobyev, P. O., Ilina, I. Y., Moshkovskii, S. A., Chumakov, P. M. et al. (2021). Multi-Omics Analysis of Glioblastoma Cells’ Sensitivity to Oncolytic Viruses. Cancers 13, 1-19.PMID34771433
↑Чумаков, П. М. (2019). Обеспечат ли онколитичесике вирусы революцию в онкологии? Вестник РАН 89, 475—484.doi:10.1134/S1019331619020023
↑ Чумаков, М. П., Ворошилова, М. К., Анцупова, А. С., Бойко, В. М., Блинова, М. И., Приймяги, Л. С., Родин, В.И., Сейбиль, В. Б., Синяк, К. М., Смородинцев, А. А., Чумаков, П. М. (1992). Живые энтеровирусные вакцины для экстренной профилактики массовых респираторных заболеваний во время осенне-зимних эпидемий гриппа и острых респираторных заболеваний. Журнал микробиологии, эпидемиологии и инфекционных заболеваний, 37-40.PMID1338742