Нанопена состоит из углеродных кластеров низкой плотности, нанизанных на нерегулярную трёхмерную сетку с периодом 5,6±0,4 Å[1]. Каждый кластер имеет диаметр около 6 нм и содержит порядка 12000 атомов углерода,[2] соединённых в графитоподобные слои, имеющие отрицательную кривизну, благодаря семиугольным включениям в шестиугольную структуру. Это противоположно структуре фуллеренов, у которых углеродные слои имеют положительную кривизну из-за пятиугольных включений.
Крупномасштабная структура углеродной нанопены сходна с аэрогелем, но её плотность в 100 раз меньше плотности углеродного аэрогеля.
Содержание водорода — менее 100 млн−1, совокупное содержание других атомов — менее 500 млн−1 (в том числе Fe+Ni — менее 110 млн−1)[2].
Углеродная пена представляет собой очень лёгкий порошок чёрного цвета. Плотность нанопены — порядка 2÷10 мг/см³[1]. Это одно из самых лёгких твёрдых веществ (для сравнения, плотность воздуха 1,2÷1,3 мг/см³)[3].
Углеродная нанопена имеет большое удельное сопротивление 10÷30 МОм·м (при комнатной температуре)[1] которое убывает с нагреванием, то есть она является полупроводником[4]. Таким образом, электропроводность нанопены гораздо меньше, чем у углеродного аэрогеля. Это связано с тем, что углеродная нанопена имеет многочисленные неспаренные электроны, наличие которых Роде объяснил тем, что в ней содержатся атомы углерода с тремя связями. Это обусловливает полупроводниковые свойства нанопены.
Углеродная нанопена обладает сильными парамагнитными свойствами, а при температуре ниже ~92 К (точка Кюри) становится ферромагнетиком с узкой петлёй гистерезиса. Поле насыщения — 0,42 СГСМ-ед./г[4].[2][5] Она имеет «постоянный» магнитный момент сразу после изготовления, но это состояние сохраняется лишь в течение пары часов. Это единственная форма углерода, которая притягивается к магниту при комнатной температуре[3].
Благодаря очень маленькой плотности (2÷10 мг/см³) и большой площади поверхности (300÷400 м²/г), углеродная нанопена может быть использована для хранения водорода в топливных ячейках[6].
Полупроводниковые свойства нанопены могут быть использованы в электронике.
Химическая нейтральность и стойкость нанопены открывает широкие возможности применения нанопены в медицине:
поскольку нанопена хорошо поглощает инфракрасное излучение, то, введя её в опухоль, можно было бы уничтожить последнюю, облучая инфракрасным светом, поскольку нанопена нагревалась бы гораздо сильнее, чем соседние здоровые ткани.
↑ 12345Rode, Andrei V.; et al. Structural analysis of a carbon foam formed by high pulse-rate laser ablation (англ.) // Applied Physics A : journal. — 1999. — Vol. 69, no. 7. — P. S755—S758. — doi:10.1007/s003390051522.
↑Rode, A. V.; et al. Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation (англ.) // Applied Surface Science : journal. — 2002. — Vol. 197—198. — P. 644—649. — doi:10.1016/S0169-4332(02)00433-6.