С 1980-х безопасность криптографического обмена ключами и цифровых подписей в Интернете была главным образом основана на небольшом числе основных криптосистем с открытым ключом. Криптостойкость этих алгоритмов основывается на маленьком количестве задач, сложных для вычислений классическими методами, но довольно легко решаемых с помощью квантового компьютера[3]. Эти задачи — факторизация двух тщательно подобранных простых чисел, трудность вычисления дискретного логарифма в выбранном конечном поле и трудность вычисления дискретного логарифма в подобранной группе точек эллиптической кривой. Существует мнение, что квантовые компьютеры будут доступны уже через 10-15 лет[4]. Если квантовые компьютеры с достаточной памятью были бы построены, все криптосистемы с открытым ключом, основанные на этих трех классических трудных задачах, стали бы крайне уязвимыми[1]. Такой тип криптографии с открытым ключом используется сегодня для защиты интернет-сайтов, авторизационной информации компьютера и для предотвращения компьютеров от получения вредоносного программного обеспечения[5].
Криптография, которая не поддается взлому квантовым компьютером, называется квантово-защищенной или постквантовой криптографией. Один из классов этих алгоритмов основан на концепции «обучение с ошибками», введенной Одедом Регев в 2005 году[6]. Специализированная форма обучения с ошибками работает в кольце многочленов над конечным полем. Эта специализированная форма называется кольцом обучения с ошибками или RLWE[7].
RLWE обмен ключами разработан как квантово-безопасная замена для протоколов, которые используются для обеспечения безопасности создания секретных ключей по ненадежным каналам связи. Также как и протокол Диффи—Хеллмана, RLWE обеспечивает криптографическое свойство «совершенно прямой секретности»[9][неавторитетный источник?][источник не указан 3209 дней], целью которого является снижение эффективности программ массового наблюдения и убеждение, что нет долгосрочных секретных ключей, которые могут быть скомпрометированы, что позволит осуществить объемную расшифровку.
Коэффициенты этого полинома являются целыми числами по модулю q. Полином Φ(x) = xn +1, где n является степенью 2 (в большинстве случаев значения для n = 256, 512 или 1024).
RLWE-KEX использует полиномы, которые считаются «малыми» по отношению к мере, называемой «бесконечной» нормой[11][неавторитетный источник?][источник не указан 3209 дней]. Бесконечная норма для многочлена — значение наибольшего коэффициента полинома, когда коэффициенты рассматриваются как элементы множества {,…, 0, …, }. Для обеспечения безопасности алгоритма необходимо генерировать случайные полиномы s(x), малые по отношению к бесконечной норме. Это делается случайным формированием коэффициентов для многочлена (sn-1, …, s0), которые гарантированно или с большой вероятностью будут небольшими. Есть два распространенных способа:
Использование дискретного равномерного распределения — коэффициенты полинома небольшой равномерной пробы из набора малых коэффициентов. Пусть b — целое число, намного меньшее q. При выборе случайным образом коэффициентов из множества { -b, -b+1, -b+2. … −2, −1, 0, 1, 2, … , b-2, b-1, b}, полином будет небольшим по отношению к a(x). Синг предлагает использовать b = 5[12][неавторитетный источник?][источник не указан 3209 дней]. Таким образом, коэффициенты будут выбраны из множества { q-5, q-4, q-3, q-2, q-1, 0 , 1, 2, 3, 4, 5 }.
Использование дискретного нормального распределения — коэффициенты выбираются случайным образом для нечетного значения q с помощью выборки из множества { ; } в соответствии с дискретным распределением Гаусса с математическим ожиданием 0 и дисперсиейσ. Этот метод сложнее, чем дискретное равномерное распределение, но он позволяет доказать безопасность алгоритма[13].
Пусть случайные небольшие полиномы будут соответствовать распределению, обозначенному как D. Число q будет нечетным простым таким, что q ≡ 1 mod 4 и q ≡ 1 mod 2n с целью минимизировать количество операций выбора случайного бита на границе множеств[14][неавторитетный источник?][источник не указан 3209 дней]. Это позволит реализовать алгоритм наиболее эффективно [15]. Степень полинома Ф(x) является степенью 2[16][неавторитетный источник?][источник не указан 3209 дней].
Пусть фиксированный многочлен а(х) — общий для всех пользователей сети, генерируемый с помощью криптографическистойкогогенератора псевдослучайных чисел.
Взяв а(х), произвольно выбираются небольшие многочлены s(x) и e(x), s(x) — закрытый ключ в обмене открытыми ключами. Соответствующим открытым ключом будет многочлен t(х) = а(х)s(х) + е(х)[11][неавторитетный источник?][источник не указан 3209 дней]. Безопасность обмена ключами основана на трудности найти пару небольших многочленов s'(х) и e'(х)таких, что для данной t(х)а(х)s'(х) + е'(х) = t(х).
Обмен ключами происходит между агентами обмена ключами Алисой, обозначенной как A, и Бобом, обозначенным как B. И A, и B знают q, n, a(x) и умеют генерировать небольшие полиномы в соответствии с распределением D[10][17].
Генерация двух малых полиномов sB(x) и eB(x) путём выборки из распределения D.
Вычисление v(x) =tA(x)·sB(x) + eB(x) . Заметим, что v(x) = a(x)sA(x)sB(x) + eA(x)sB(x) + eB(x) и что eB(x) + eA(x)sB(x) также будет малым, так как eB(x) был выбран малым, коэффициенты eA(x)sB(x) ограничены в росте и также будут малы.
Распределение коэффициентов v(x) сглаживается с помощью цикла по коэффициентам и случайной корректировки определенных значений. От j=0 до n-1:
Если vj = 0, то придумать случайный бит(обозначим b). Если он — 0, то vj = 0, иначе vj = q-1.
Если vj = , то придумать случайный бит(b). Если он — 0 то vj = иначе vj = .
Формирование 2 битовых потоковcj и uj длины n из коэффициентов v(x) с помощью следующих преобразований. От j=0 до n-1:
Записать cj как младший бит от целой части 4vj/q, то есть .
Формирование ключа k, как конкатенацииun-1, …, u0.
Если обмен ключами сработает должным образом то строки un-1, …, u0 у Алисы и Боба будут совпадать[18][неавторитетный источник?][источник не указан 3209 дней].
В зависимости от специфики выбранных параметров n, q, σ и b, есть вероятность того, что tA(x) и tB(x) будут совпадать. Параметры для обмена ключами должны быть выбраны так, чтобы вероятность этой ошибки при обмене ключами была очень мала — гораздо меньше, чем вероятность неопределяемых искажений или сбоев устройств.
Обмен работает в кольце многочленов степени не больше n-1 по модулю многочлена Φ(х). Предполагается, что n — степень 2 , а q — простое, q ≡ 1 mod 4. Исходя из работы Пейкерта, Синг предложил два набора параметров для RWLE-KEX[19][неавторитетный источник?][источник не указан 3209 дней].
Для 128-битовой защиты: n = 512, q = 25601 и Φ(x) = x512 + 1
Для 256-битовой защиты: n = 1024, q = 40961 и Φ(x) = x1024 + 1
Так как обмен ключами использует случайную ограниченную выборку, есть вероятность того, что будут сгенерированы одинаковые ключи для Алисы и Боба. Предположим, гауссов параметр σ = или используется равномерная выборка при b = 5, тогда вероятность ошибки совпадения открытых ключей меньше, чем 2−71 и 2−75 для 128 разрядных параметров и меньше 2−91 и 2−97для 256-битных параметров соответственно[19][неавторитетный источник?][источник не указан 3209 дней].
В работе Алким, Дука, Попплеманн и Швабе (ноябрь 2015) рекомендуют следующие параметры: n = 1024, q = 12289, и Φ(x) = x1024 + 1, так как они обеспечивают эффективность и безопасность алгоритма. В случае 256-битовой защиты этот набор обеспечивает вероятность ошибки совпадения 2−110[20].
Вычислительная сложность взлома RLWE-KEX того же порядка, что и решение кратчайшей векторной задачи (SVP) в идеальной решетке[21]. Лучшим способом оценить практическую безопасность данного набора параметров решетки является алгоритм сокращения BKZ 2.0 (неопр.).. В соответствии с алгоритмом BKZ 2.0, основные параметры обмена, перечисленные выше, будут обеспечивать больше чем 128 и 256 бит безопасности соответственно[22][неавторитетный источник?][источник не указан 3209 дней].
Alkim, Erdem; Ducas, Leo; Pöppelman, Thomas; Schwabe, Peter.Post-quantum key exchange — a new hope(англ.) 32. International Association for Cryptologic Research (2015).