MD5 — один из серии алгоритмов по построению дайджеста сообщения, разработанный профессором Рональдом Л. Ривестом из Массачусетского технологического института. Был разработан в 1991 году как более надёжный вариант предыдущего алгоритма MD4[1]. Описан в RFC 1321[2]. Позже Гансом Доббертином были найдены недостатки алгоритма MD4.
В 1993 году Берт ден Бур (Bert den Boer) и Антон Босселарс (Antoon Bosselaers) показали, что в алгоритме возможны псевдоколлизии, когда разным инициализирующим векторам соответствуют одинаковые дайджесты для входного сообщения[3].
В 1996 году Ганс Доббертин (Hans Dobbertin) объявил о коллизии в алгоритме[4], и уже в то время было предложено использовать другие алгоритмы хеширования, такие как Whirlpool, SHA-1 или RIPEMD-160.
Из-за небольшого размера хеша в 128 бит можно рассматривать birthday-атаки. В марте 2004 года был запущен проект MD5CRK с целью обнаружения уязвимостей алгоритма, при помощи birthday-атаки. Проект MD5CRK закончился 17 августа 2004 года, когда Ван Сяоюнь (Wang Xiaoyun), Фэн Дэнго (Feng Dengguo), Лай Сюэцзя (Lai Xuejia) и Юй Хунбо (Yu Hongbo) обнаружили уязвимости в алгоритме[5].
1 марта 2005 года Арьен Ленстра, Ван Сяоюнь и Бенне де Вегер продемонстрировали построение двух документов X.509 с различными открытыми ключами и одинаковым хешем MD5[6].
18 марта 2006 года исследователь Властимил Клима (Vlastimil Klima) опубликовал алгоритм, который может найти коллизии за одну минуту на обычном компьютере, метод получил название «туннелирование»[7].
В конце 2008 года US-CERT призвал разработчиков программного обеспечения, владельцев веб-сайтов и пользователей прекратить использовать MD5 в любых целях, так как исследования продемонстрировали ненадёжность этого алгоритма[8].
24 декабря 2010 года Тао Се (Tao Xie) и Фэн Дэнго (Feng Dengguo) впервые представили коллизию сообщений длиной в один блок (512 бит)[9].
Ранее коллизии были найдены для сообщений длиной в два блока и более. Позднее Марк Стивенс (Marc Stevens) повторил успех, опубликовав блоки с одинаковым хешем MD5, а также алгоритм для получения таких коллизий[10].
В 2011 году был опубликован информационный документ RFC 6151. Он признаёт алгоритм хеширования MD5[2] небезопасным для некоторых целей и рекомендует отказаться от его использования в пользу SHA-2.
Схема работы алгоритма MD5. F — нелинейная функция. Mi обозначает 32-битный блок входного сообщения, а Ki — 32-битную константу. <<<s обозначает циклический сдвиг влево на s бит. обозначает сложение по модулю 232. F зависит от раунда, Ki и s меняются каждую операцию.
На вход алгоритма поступает входной поток данных, хеш которого необходимо найти. Длина сообщения измеряется в битах и может быть любой (в том числе нулевой). Запишем длину сообщения в L. Это число целое и неотрицательное. Кратность каким-либо числам необязательна. После поступления данных идёт процесс подготовки потока к вычислениям.
Затем добавляют некоторое число нулевых бит такое, чтобы новая длина потока стала сравнима с 448 по модулю 512, ().
Выравнивание происходит в любом случае, даже если длина исходного потока уже сравнима с 448.
В конец сообщения дописывают 64-битное представление длины данных (количество бит в сообщении) до выравнивания. Сначала записывают младшие 4 байта, затем старшие. Если длина превосходит , то дописывают только младшие биты (эквивалентно взятию по модулю ). После этого длина потока станет кратной 512. Вычисления будут основываться на представлении этого потока данных в виде массива слов по 512 бит.
Для вычислений инициализируются четыре переменные размером по 32 бита, начальные значения которых задаются шестнадцатеричными числами (порядок байтов little-endian):
А = 01 23 45 67; // 67452301h
В = 89 AB CD EF; // EFCDAB89h
С = FE DC BA 98; // 98BADCFEh
D = 76 54 32 10. // 10325476h
В этих переменных будут храниться результаты промежуточных вычислений. Начальное состояние ABCD называется инициализирующим вектором.
Определим функции и константы, которые понадобятся нам для вычислений.
Для каждого раунда потребуется своя функция. Введём функции от трёх параметров — слов, результатом также будет слово:
1-й этап: ,
2-й этап: ,
3-й этап: ,
4-й этап: ,
где побитовые логические операции XOR, AND, OR и NOT соответственно.
Определим таблицу констант — 64-элементная таблица данных, построенная следующим образом: .[11]
Каждый 512-битный блок проходит 4 этапа вычислений по 16 раундов. Для этого блок представляется в виде массива X из 16 слов по 32 бита. Все раунды однотипны и имеют вид: [abcd k s i], определяемый как , где k — номер 32-битного слова из текущего 512-битного блока сообщения, и — циклический сдвиг влево на s бит полученного 32-битного аргумента. Число s задаётся отдельно для каждого раунда.
Заносим в блок данных элемент n из массива 512-битных блоков. Сохраняются значения A, B, C и D, оставшиеся после операций над предыдущими блоками (или их начальные значения, если блок первый).
После окончания цикла необходимо проверить, есть ли ещё блоки для вычислений. Если да, то переходим к следующему элементу массива (n + 1) и повторяем цикл.
Результат вычислений находится в буфере ABCD, это и есть хеш. Если выводить побайтово, начиная с младшего байта A и заканчивая старшим байтом D, то мы получим MD5-хеш.
1, 0, 15, 34, 17, 18…
Алгоритм MD5 происходит от MD4. В новый алгоритм добавили ещё один раунд, теперь их стало 4 вместо 3 в MD4. Добавили новую константу для того, чтобы свести к минимуму влияние входного сообщения, в каждом раунде на каждом шаге и каждый раз константа разная, она суммируется с результатом F и блоком данных. Изменилась функция вместо . Результат каждого шага складывается с результатом предыдущего шага, из-за этого происходит более быстрое изменение результата. Для этой же цели оптимизирована величина сдвига на каждом круге. Изменился порядок работы с входными словами в раундах 2 и 3[2].
Хеш содержит 128 бит (16 байт) и обычно представляется как последовательность из 32 шестнадцатеричных цифр[12].
Несколько примеров хеша:
MD5("md5") = 1BC29B36F623BA82AAF6724FD3B16718
Даже небольшое изменение входного сообщения (в нашем случае на один бит: ASCII символ «5» с кодом 3516 = 0001101012 заменяется на символ «4» с кодом 3416 = 0001101002) приводит к полному изменению хеша. Такое свойство алгоритма называется лавинным эффектом.
При этом методы перебора по словарю и brute-force могут использоваться для взлома хеша других хеш-функций (с небольшими изменениями алгоритма). В отличие от них, RainbowCrack требует предварительной подготовки радужных таблиц, которые создаются для заранее определённой хеш-функции. Поиск коллизий специфичен для каждого алгоритма.
Для полного перебора или перебора по словарю можно использовать программы PasswordsPro[15], MD5BFCPF[16], John the Ripper. Для перебора по словарю существуют готовые словари[17]. Основным недостатком такого типа атак является высокая вычислительная сложность.
RainbowCrack — ещё один метод нахождения прообраза хеша из заданного множества. Он основан на генерации цепочек хешей, чтобы по получившейся базе вести поиск заданного хеша. Хотя создание радужных таблиц занимает много времени и памяти, последующий взлом производится очень быстро. Основная идея данного метода — достижение компромисса между временем поиска по таблице и занимаемой памятью.
Коллизия хеш-функции — это получение одинакового значения функции для разных сообщений и идентичного начального буфера. В отличие от коллизий, псевдоколлизии определяются как равные значения хеша для разных значений начального буфера, причём сами сообщения могут совпадать или различаться. В MD5 вопрос коллизий не решается[14].
В 1996 году Ганс Доббертин нашёл псевдоколлизии в MD5, используя определённые инициализирующие векторы, отличные от стандартных. Оказалось, что можно для известного сообщения построить второе, такое, что оно будет иметь такой же хеш, как и исходное. C точки зрения математики это означает: MD5(IV,L1) = MD5(IV,L2), где IV — начальное значение буфера, а L1 и L2 — различные сообщения. Например, если взять начальное значение буфера[4]:
A = 0x12AC2375
В = 0x3B341042
C = 0x5F62B97C
D = 0x4BA763E
и задать входное сообщение
AA1DDABE
D97ABFF5
BBF0E1C1
32774244
1006363E
7218209D
E01C136D
9DA64D0E
98A1FB19
1FAE44B0
236BB992
6B7A779B
1326ED65
D93E0972
D458C868
6B72746A
то, добавляя число к определённому 32-разрядному слову в блочном буфере, можно получить второе сообщение с таким же хешем. Ханс Доббертин представил такую формулу:
Тогда MD5(IV, L1) = MD5(IV, L2) = BF90E670752AF92B9CE4E3E1B12CF8DE.
В 2004 году китайские исследователи Ван Сяоюнь (Wang Xiaoyun), Фэн Дэнго (Feng Dengguo), Лай Сюэцзя (Lai Xuejia) и Юй Хунбо (Yu Hongbo) объявили об обнаруженной ими уязвимости в алгоритме, позволяющей за небольшое время (1 час на кластереIBM p690) находить коллизии[5][18].
В 2005 году Ван Сяоюнь и Юй Хунбо из университета Шаньдуна в Китае опубликовали алгоритм, который может найти две различные последовательности в 128 байт, которые дают одинаковый MD5-хеш. Одна из таких пар (различающиеся разряды выделены):
d131dd02c5e6eec4693d9a0698aff95c
2fcab58712467eab4004583eb8fb7f89
55ad340609f4b30283e488832571415a
085125e8f7cdc99fd91dbdf280373c5b
d8823e3156348f5bae6dacd436c919c6
dd53e2b487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080a80d1e
c69821bcb6a8839396f9652b6ff72a70
и
d131dd02c5e6eec4693d9a0698aff95c
2fcab50712467eab4004583eb8fb7f89
55ad340609f4b30283e4888325f1415a
085125e8f7cdc99fd91dbd7280373c5b
d8823e3156348f5bae6dacd436c919c6
dd53e23487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080280d1e
c69821bcb6a8839396f965ab6ff72a70
Каждый из этих блоков даёт MD5-хеш, равный 79054025255fb1a26e4bc422aef54eb4[19].
В 2006 году чешский исследователь Властимил Клима опубликовал алгоритм, позволяющий находить коллизии на обычном компьютере с любым начальным вектором (A,B,C,D) при помощи метода, названного им «туннелирование»[7][20].
Алгоритм MD5 использует итерационный метод Меркла — Дамгора, поэтому становится возможным построение коллизий с одинаковым, заранее выбранным префиксом. Аналогично, коллизии получаются при добавлении одинакового суффикса к двум различным префиксам, имеющим одинаковый хеш. В 2009 году было показано, что для любых двух заранее выбранных префиксов можно найти специальные суффиксы, с которыми сообщения будут иметь одинаковое значение хеша. Сложность такой атаки составляет всего 239 операций подсчёта хеша[21].
Метод Ван Сяоюня и Юй Хунбо использует тот факт, что MD5 построен на итерационном методе Меркла — Дамгора. Поданный на вход файл сначала дополняется, так чтобы его длина была кратна 64 байтам, после этого он делится на блоки по 64 байта каждый , , , . Далее вычисляется последовательность 16-байтных состояний
, , по правилу
, где — некоторая фиксированная функция. Начальное состояние называется инициализирующим вектором.
Метод позволяет для заданного инициализирующего вектора найти две пары и , такие что . Этот метод работает для любого инициализирующего вектора, а не только для вектора используемого по стандарту.
Эта атака является разновидностью дифференциальной атаки, которая, в отличие от других атак этого типа, использует целочисленное вычитание, а не XOR в качестве меры разности. При поиске коллизий используется метод модификации сообщений: сначала выбирается произвольное сообщение , далее оно модифицируется по некоторым правилам, сформулированным в статье, после чего вычисляется дифференциал хеш-функции, причём с вероятностью . К и применяется функция сжатия для проверки условий коллизии; далее выбирается произвольное , модифицируется, вычисляется новый дифференциал, равный нулю с вероятностью , а равенство нулю дифференциала хеш-функции как раз означает наличие коллизии. Оказалось, что найдя одну пару и , можно менять лишь два последних слова в , тогда для нахождения новой пары и требуется всего около операций хеширования[19].
Применение этой атаки к MD4 позволяет найти коллизию меньше чем за секунду. Она также применима к другим хеш-функциям, таким как RIPEMD и HAVAL[5].
Ранее считалось, что MD5 позволяет получать относительно надёжный идентификатор для блока данных. На данный момент данная хеш-функция не рекомендуется к использованию, так как существуют способы нахождения коллизий с приемлемой вычислительной сложностью[14][22].
Свойство уникальности хеша широко применяется в разных областях[23]. Приведённые примеры относятся и к другим криптографическим хеш-функциям.
С помощью MD5 проверяли целостность и подлинность скачанных файлов — так, некоторые программы поставляются вместе со значением контрольной суммы. Например, пакеты для инсталляции свободного ПО[24].
MD5 использовался для хеширования паролей. В системе UNIX каждый пользователь имеет свой пароль и его знает только пользователь. Для защиты паролей используется хеширование. Предполагалось, что получить настоящий пароль можно только полным перебором. При появлении UNIX единственным способом хеширования был DES (Data Encryption Standard), но им могли пользоваться только жители США, потому что исходные коды DES нельзя было вывозить из страны. Во FreeBSD решили эту проблему. Пользователи США могли использовать библиотеку DES, а остальные пользователи имеют метод, разрешённый для экспорта. Поэтому в FreeBSD стали использовать MD5 по умолчанию.[25]. Некоторые Linux-системы также используют MD5 для хранения паролей[26].
Многие системы используют базы данных для аутентификации пользователей и существует несколько способов хранения паролей[27]:
Пароли хранятся как есть. При взломе такой базы все пароли станут известны.
Хранятся только хеши паролей. Найти пароли можно, используя заранее подготовленные таблицы хешей. Такие таблицы составляются из хешей простых или популярных паролей.
К каждому паролю добавляется несколько случайных символов (их называют «соль») и результат хешируется. Полученный хеш вместе с «солью» сохраняются в открытом виде. Найти пароль с помощью таблиц таким методом не получится.
Существует несколько надстроек над MD5.
MD5 (HMAC) — Keyed-Hashing for Message Authentication (хеширование с ключом для аутентификации сообщения) — алгоритм позволяет хешировать входное сообщение L с некоторым ключом K, такое хеширование позволяет аутентифицировать подпись[28].
MD5 (Base64) — здесь полученный MD5-хеш кодируется алгоритмом Base64.
MD5 (Unix) — алгоритм вызывает тысячу раз стандартный MD5 для усложнения процесса. Также известен как MD5crypt[29].
↑Arjen Lenstra, Xiaoyun Wang and Benne de Weger.Colliding X.509 Certificates (неопр.). eprint.iacr.org (1 марта 2005). Дата обращения: 4 декабря 2015. Архивировано 4 марта 2016 года.
↑PasswordsPro (неопр.). InsidePro Software. — Программа для восстановления паролей к хешам различных типов. Дата обращения: 19 ноября 2008. Архивировано из оригинала 27 августа 2011 года.
↑CERIAS — Security Archive (неопр.). Center for Education and Research in Information Assurance and Security (июнь 2000). Дата обращения: 19 ноября 2008. Архивировано 7 декабря 2008 года.
↑Vicki Stanfield, Roderick W. Smith. Linux System Administration (Craig Hunt Linux Library). — 2. — Sybex, 2002. — С. 479—483. — 656 с. — ISBN 978-0782141382.
↑Hossein Bidgoli. The Internet Encyclopedia, Volume 3. — 1. — Wiley, 2003. — С. 3—4. — 908 с. — ISBN 978-0471222019.