Пример диаграммы моностатической ЭПР (A-26 Инвэйдер)
Эффекти́вная пло́щадь рассе́яния (ЭПР; в некоторых источниках — эффективная пове́рхность рассеяния, эффективный попере́чник рассеяния, эффективная отража́ющая площадь, ЭОП) в радиолокации — площадь некоторой фиктивной плоской поверхности, расположенной нормально к направлению падающей плоской волны и являющейся идеальным и изотропным переизлучателем, которая, будучи помещена в точку расположения цели, создаёт в месте расположения антеннырадиолокационной станции ту же плотность потока мощности, что и реальная цель[1].
ЭПР является количественной мерой свойства объекта рассеивать электромагнитную волну[2]. Наряду с энергетическим потенциалом приёмопередающего тракта и КУ антенн РЛС, ЭПР объекта входит в уравнение дальности радиолокации и определяет дальность, на которой объект может быть обнаружен радиолокатором. Повышенное значение ЭПР означает бо́льшую радиолокационную заметность объекта, снижение ЭПР затрудняет обнаружение (см. стелс-технология).
ЭПР конкретного объекта зависит от его формы, размеров, материала, из которого он изготовлен, от его ориентации (ракурса) по отношению к антеннам передающей и приёмной позиций РЛС (в том числе, и от поляризации электромагнитных волн), от длины волны зондирующего радиосигнала. ЭПР определяется в условиях дальней зоны рассеивателя, приёмной и передающей антенн радиолокатора.
Поскольку ЭПР — формально введённый параметр, то её значение не совпадает ни со значением полной площади поверхности рассеивателя, ни со значением площади его поперечного сечения (англ. Cross-Section). Расчёт ЭПР — одна из задач прикладной электродинамики, которая решается с той или иной степенью приближения аналитически (только для ограниченного ассортимента тел простой формы, например, проводящей сферы, цилиндра, тонкой прямоугольной пластины и т. п.) или численными методами. Измерение (контроль) ЭПР проводится на полигонах и в радиочастотных безэховых камерах с использованием реальных объектов и их масштабных моделей.
ЭПР имеет размерность площади и обычно указывается в м² или дБкв.м. Для объектов простой формы — тестовых — ЭПР принято нормировать к квадрату длины волны зондирующего радиосигнала. ЭПР протяжённых цилиндрических объектов нормируют к их длине (погонная ЭПР, ЭПР на единицу длины). ЭПР распределённых в объёме объектов (например, дождевого облака) нормируют к объёму элемента разрешения РЛС (ЭПР/м³). ЭПР поверхностных целей (как правило, участка земной поверхности) нормируют к площади элемента разрешения РЛС (ЭПР/м²). Иными словами, ЭПР распределённых объектов зависит от линейных размеров конкретного элемента разрешения конкретной РЛС, которые зависят от расстояния РЛС — объект.
ЭПР можно определить следующим образом (определение эквивалентно приведённому в начале статьи):
Эффективная площадь рассеяния (для гармонического зондирующего радиосигнала) — отношение мощности радиоизлучения эквивалентного изотропного источника (создающего в точке наблюдения такую же плотность потока мощности радиоизлучения, что и облучаемый рассеиватель) к плотности потока мощности (Вт/м²) зондирующего радиоизлучения в точке расположения рассеивателя.
ЭПР зависит от направления от рассеивателя на источник зондирующего радиосигнала и направления в точку наблюдения. Поскольку эти направления могут не совпадать (в общем случае источник зондирующего сигнала и точка регистрации рассеянного поля разнесены в пространстве), то определённая таким образом ЭПР называется бистатической ЭПР (двухпозиционной ЭПР, англ. bistatic RCS).
Диаграмма обратного рассеяния (ДОР, моностатическая ЭПР, однопозиционная ЭПР, англ. monostatic RCS, back-scattering RCS) — значение ЭПР при совпадении направлений от рассеивателя на источник зондирующего сигнала и на точку наблюдения. Под ЭПР часто подразумевают её частный случай — моностатическую ЭПР, то есть ДОР (смешивают понятия ЭПР и ДОР) из-за малой распространённости бистатических (многопозиционных) РЛС (по сравнению с традиционными моностатическими РЛС, оснащёнными единой приёмо-передающей антенной). Тем не менее, следует различать ЭПР(θ, φ; θ0, φ0) и ДОР(θ, φ) = ЭПР(θ, φ; θ0=θ, φ0=φ), где θ, φ — направление на точку регистрации рассеянного поля; θ0, φ0 — направление на источник зондирующей волны (θ, φ, θ0, φ0 — углы сферической системы координат, начало которой совмещено с рассеивателем).
В общем случае для зондирующей электромагнитной волны с негармонической временной зависимостью (широкополосный в пространственно-временно́м смысле зондирующий сигнал) эффективная площадь рассеяния — отношение энергии эквивалентного изотропного источника к плотности потока энергии (Дж/м²) зондирующего радиоизлучения в точке расположения рассеивателя.
Рассмотрим отражение волны, падающей на изотропно отражающую поверхность, площадью, равной ЭПР.
Отражённая от такой цели мощность — это произведение ЭПР на плотность падающего потока мощности:
,
(1)
где — ЭПР цели, — плотность потока мощности падающей волны данной поляризации в точке расположения цели, — мощность, отражённая целью.
С другой стороны, излучённая изотропно мощность
,
(2)
где — расстояние от РЛС до цели, — плотность потока мощности отражённой от цели волны данной поляризации в точке расположения РЛС.
Подставляя выражение (2) в (1), получаем выражение для ЭПР цели:
.
(3)
Или, используя напряжённости поля падающей волны в точке нахождения цели и отражённой волны в месте расположения РЛС:
Можно определить поток мощности падающей волны через излучённую мощность и коэффициент направленного действия антенны для данного направления излучения.
.
(6)
Подставляя (6) и (2) в (5), для мощности на входе приёмника РЛС имеем:
ЭПР имеет размерность площади (м²), но является не геометрической площадью, а энергетической характеристикой, то есть определяет величину мощности принимаемого сигнала.
Аналитически ЭПР можно рассчитать только для простых целей. Для сложных целей ЭПР измеряется практически на специализированных полигонах, или в безэховых камерах.
ЭПР цели не зависит ни от интенсивности излучаемой волны, ни от расстояния между станцией и целью. Любое увеличение ведёт к пропорциональному увеличению и их отношение в формуле не изменяется. При изменении расстояния между РЛС и целью отношение меняется обратно пропорционально и величина ЭПР при этом остаётся неизменной.
1) Если объект небольших размеров, то — расстояние и поле падающей волны можно считать неизменными.
2) Расстояние R можно рассматривать как сумму расстояния до цели и расстояния в пределах цели:
Уголковый отражатель представляет собой три перпендикулярно расположенных плоскости. В отличие от пластины, уголковый отражатель даёт хорошее отражение в широком диапазоне углов.
Двуточечной целью будем называть пару целей, находящуюся в одном объёме разрешения РЛС.
Используя формулу (4), можем найти амплитуды полей отражённой волны:
Зависимость ЭПР от угла отражения — называется диаграммой обратного рассеяния (ДОР).
ДОР будет иметь изрезанный характер и явно многолепестковый. При этом нули ДОР будут соответствовать противофазному сложению сигналов от цели в точке расположения РЛС, а ток — синфазному значению. При этом ЭПР может быть как больше, так и меньше ЭПР каждой из отдельных целей. Если волны приходят в противофазе, то будет наблюдаться минимум, а если в фазе, то максимум:
Пусть , тогда:
Реальные объекты имеют несколько колеблющихся точек.
, а значит .
Тогда суммарное поле:
— определяется как изменение фазовых структур отражённой волны.
Фазовый фронт отражённой волны отличается от сферического.
Нарушение любого из условий вводит цель в класс распределённых
Здесь:
— Размер разрешающего объёма РЛС по дальности;
— Размер разрешающего объёма РЛС по ширине (углу азимута);
— Размер разрешающего объёма РЛС по высоте (углу места);
То есть линейные размеры цели должны полностью находиться внутри элемента разрешения РЛС.
Если это не так, то в этом случае ЭПР цели будет суммой ЭПР каждого элементарного участка цели:
.
Если распределённый объект состоит из изотропных однотипных отражателей с одинаковыми свойствами, то общее ЭПР можно найти как произведение ЭПР на число отражателей:
↑Сотников А. М., Сидоренко Р. Г., Рыбалка Г. В.Оценка отражающих свойств наземных и воздушных объектов с пассивной защитой на основе композитных радиоизотопных покрытий(рус.) (pdf). Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков (15 января 2009). — Получены численные оценки отражающих свойств наземных и воздушных объектов с композитными радиоизотопными покрытиями. Проведенные численные исследования показывают принципиальную возможность и целесообразность применения композитных радиозотопных покрытий для защиты вооружения и военной техники от радиолокационных систем самонаведения сантиметрового и миллиметрового диапазона волн. Расчеты выполнены для однослойной и двухслойной структуры построения композитных радиозотопных покрытий. Дата обращения: 18 мая 2009. Архивировано 27 февраля 2012 года.