Холодный ядерный синтез

Холо́дный я́дерный си́нтез (англ. Cold fusion) — возможный процесс ядерной реакции синтеза в определённых атомно-молекулярных системах, открытый ещё в 1989 году М. Флейшманом и С. Понсом. В его основе лежит преобразование легких химических элементов в более тяжелые при низких температурах[1].

Одним из ключевых преимуществ холодного ядерного синтеза является его высокая энергетическая эффективность. Причина этого заключается в том, что он позволяет извлекать энергию из ядерных процессов при более низких температурах, не требуя огромных затрат на поддержание горячей термоядерной реакции[2]. В будущем холодный ядерный синтез может стать ключевым не только в области энергетики, но и в других сферах, к примеру, в медицине[3].

В 2020 году был запущен проект под названием CleanHME (чистая водород-металлическая энергия), направленный на создание безопасного и дешевого источника энергии. Проект получил финансирование от Рамочной программы Европейского союза Horizon 2020 в рамках грантового соглашения № 951 974[2].

Теория

Согласно современной научной картине мира, для того, чтобы произошла ядерная реакция, необходимо сблизить ядра на расстояние, на котором работает сильное взаимодействие. Этому препятствует более дальнодействующее кулоновское отталкивание. Чтобы сблизить ядра, нужно затратить энергию порядка 0,1 МэВ, которой соответствует температура порядка 11 миллионов градусов (это нижний теоретический предел). На Солнце реакция идёт при температуре ~15 млн градусов и очень высоком давлении.

Для получения экономически эффективной установки ядерного синтеза в земных условиях нужна температура порядка 100 млн градусов. Поэтому большинство учёных относятся к заявлениям о ХЯС с большим скепсисом.

История исследований возможности ХЯС

Предположение о возможности холодного ядерного синтеза (ХЯС) до сих пор не нашло подтверждения и является предметом постоянных спекуляций, однако эта область до сих пор активно изучается.

ХЯС в клетках живого организма

Луи Кервран[fr], опубликовал c 1960 по 1975 г. г. несколько статей и книг, в которых описывал «трансмутацию» углерода и кислорода в азот в живых организмах[4][5]. За свои работы Кервран был удостоен Шнобелевской премии[6]. Некоторые специалисты высмеяли Луи Керврана, например, в журнале «Химия и жизнь» в № 2 за 1977 г. опубликована шуточная статья «Биологическая трансмутация: факты, фантастика, теория»[Комм. 1][7]

«Члены-корреспонденты» ООО РАЕН В. И. Высоцкий (проф., зав. каф. математики и теоретической радиофизики Киевского национального университета[8]) и А. А. Корнилова (к. ф. н., МГУ) опубликовали статью о «биологической трансмутации» в журнале, издаваемом РАЕН[9], также они распространяют свои идеи в книгах, изданных в России и за рубежом[8].

ХЯС в электролитической ячейке

Сообщение химиков Мартина Флейшмана и Стенли Понса об электрохимически индуцированном ядерном синтезе — превращении дейтерия в тритий или гелий в условиях электролиза на палладиевом электроде[10], появившееся в марте 1989 года, наделало много шума. Журналисты назвали их опыты «холодным термоядом»[11][12][13].

Эксперименты Флейшмана и Понса не смогли воспроизвести другие учёные, и научное сообщество считает, что их заявления неполны и неточны и предствляют собой либо проявление некомпетентности, либо мошенничество[11][14][15][16][17][18][19].

Флейшман и Понс сделали вывод о ядерной реакции, обнаружив излучение нейтронов. Ак. РАН Эдуард Кругляков пояснил, что в экспериментах с пропусканием тока через палладиевый электрод возникает «искрение» на микротрещинах электрода, при этом ионы разгоняются до энергии порядка 1 кЭв, и этого может быть достаточно для получения небольшого количества нейтронов[20] и объяснения плохой воспроизводимости результатов.[21]

Экспериментальные подробности

Некоторые опыты по «холодному ядерному синтезу» включали в себя:

  • «катализатор», такой как никель или палладий, в виде тонких плёнок, порошка или губки;
  • «рабочее тело», содержащее изотопы водорода: тритий, дейтерий или протий;
  • систему «возбуждения» ядерных превращений изотопов водорода «накачкой» «рабочего тела» энергией — посредством нагревания, механического давления, воздействием лазерных лучей, акустических волн, электромагнитного поля или электрического тока.

Экспериментальная установка камеры холодного синтеза состоит из палладиевых электродов, погружённых в электролит, содержащий тяжёлую или сверхтяжёлую воду. Камеры для электролиза могут быть открытыми или закрытыми. В системах открытых камер газообразные продукты электролиза покидают рабочий объём, что затрудняет калькуляцию баланса между полученной и затраченной энергией. В экспериментах с закрытыми камерами продукты электролиза утилизируются, например, путём каталитической рекомбинации в специальных частях системы. Экспериментаторы, в основном, стремятся обеспечить устойчивое выделение тепла непрерывной подачей электролита. Проводятся также опыты типа «тепло после смерти», в которых избыточное (за счёт предполагаемого ядерного синтеза) выделение энергии контролируется после отключения тока.

Другие эксперименты

США (2002)

8 марта 2002 года в солидном международном научном журнале «Сайенс» появилось сообщение о наблюдении «явлений, не противоречащих возможности» ХЯС. Русско-американская группа исследователей под руководством Руси Талеярхана в эксперименте с ультразвуковой кавитацией ацетона, в котором простой водород замещён дейтерием, наблюдала замену дейтерия тритием и излучение нейтронов во время сонолюминесценции. При этом установка не выделяла дополнительную энергию[22]. Сразу же после публикации физик Нэт Фиш (англ. Nat Fisch, занимается Физикой Плазмы в Принстонском университете) высказался: «То, что я видел, производит впечатление безграмотного и неряшливого отчёта»[23].

Два других сотрудника Окриджской лаборатории повторили эксперимент на той же аппаратуре с другим детектором и не обнаружили поток нейтронов, который наблюдал Талеярхан[22][23].

Кроме того, критики указывают, что температура и энергия в центре схлопывающихся пузырьков на три порядка ниже, чем нужно для слияния ядер дейтерия[22][24][25].

Япония (2008)

В 2008 году отставной японский учёный Ёсиаки Арата[en] из Осакского университета совместно с китайским коллегой Юэчан Чжан из Шанхайского университета сообщили о выделении энергии в эксперименте с палладием, оксидом циркония и дейтерием под высоким давлением, и заявили, что они наблюдали реакцию холодного ядерного синтеза с выделением гелия. Авторы не сообщили никаких данных о деталях своих опытов, в том числе не предоставили для анализа методику измерений[26]. Арата ещё в 2004 г. запатентовал свою установку в Японии[27] и в 2006 г. — в США[28]

Генератор Росси (2011)

В январе 2011 года Андреа Росси[en] (Болонья, Италия), как он сам утверждает, испытал опытную установку «Катализатор энергии Росси» по превращению никеля в медь при участии водорода, а 28 октября 2011 года им была продемонстрирована для журналистов известных СМИ и заказчика из США промышленная установка на 1 МВт. История вызвала всплеск интереса СМИ.

По одному из заявлений Росси в январе 2011 года, он имеет чёткое понимание о задействованном механизме, но отказывается публично его раскрывать, пока не будет получен патент[29].

Профессор Уго Барди (Ugo Bardi) из Флорентийского университета, отмечая противоречивые заявления Росси о наличии/отсутствии гамма-излучения, размещении производства (то во Флориде, то не в США), а также то, что часть сторонников и спонсоров уже вышла из проекта, в марте 2012 года высказался о нём:

E-Cat достиг своего конца. Он ещё имеет нескольких уверенных сторонников, но, наиболее вероятно, вскоре канет во мрак патологической науки, к которому он и принадлежит[30].

В 2014 году группа профессора физики Болонского университета Джузеппе Леви исследовала параметры процесса. Дж. Леви сообщил, что устройство, в котором один грамм топлива нагревали до температуры около 1400ºС с помощью электричества, производило аномальное количество тепла[31][32].

Япония (2017—2020)

В университете Тохоку в серии экспериментов[33][34] зафиксировано увеличение температуры в тонких пленках из Ni, Pd, насыщенных H2, D2. Посредством ионного распыления создавались слои Pd/Ni/Pd либо Ni/Cu/Ni. Далее проводилось 2 теста: 1) нагрев в вакууме, заполнение камеры H2/D2; 2) предварительное заполнение камеры H2/D2, откачка H2/D2 до вакуума, нагрев в вакууме, заполнение камеры H2/D2. Нагрев осуществлялся керамическим нагревателем мощностями 7..40 Вт с температурами 300..900 °C. В тесте (2) выделялось больше тепла, чем в тесте (1) , КПД = 1,15..1,8. В одном из экспериментов из-за недостаточного напряжения не удалось получить напыление, в результате опыты (1) и (2) дали одинаковые результаты. Проведенная масс-спектрометрия не позволила установить ядерную реакцию.

Международные конференции по ХЯС

Конференции International Conference on Cold Fusion[en] (ICCF) проводятся с 1990 года в США, Японии и России. С 2007 используют название «International Conference on Condensed Matter Nuclear Science». Ранние мероприятия часто критиковались за привлечение псевдоучёных[35].

  1. ICCF-1 Солт-Лейк-Сити, США 1990
  2. ICCF-2 Комо, Япония 1991
  3. ICCF-3 Нагоя, Япония 1992
  4. ICCF-4 Гавайи, США 1993
  5. ICCF-5 Монте Карло, Монако 1995
  6. ICCF-6 Саппоро, Япония 1996
  7. ICCF-7 Ванкувер, Канада 1998
  8. ICCF-8 Леричи, Италия 2000
  9. ICCF-9 Пекин, КНР 2002
  10. ICCF-10 Кембридж, США 2003
  11. ICCF-11 Марсель, Франция 2004[36]
  12. ICCF-12 Иокогама, Япония 2005[37]
  13. ICCF-13 Дагомыс, Россия 2007[38]
  14. ICCF-14 Вашингтон, США 2008[39]
  15. ICCF-15 Рим, Италия 2009[40]
  16. ICCF-16 Ченнай, Индия 2011[41]
  17. ICCF-17 Тэджон, Южная Корея 2012[42]
  18. ICCF-17 2012 KAIST ** Daejeon, South Korea Sunwon Park, Frank Gordon
  19. ICCF-18 2013 University of Missouri ** Columbia, Missouri, U.S. Robert Duncan, Yeong Kim
  20. ICCF-19 2015 TSEM ** Padua, Italy Antonio La Gatta, Michael McKubre, Vittorio Violante
  21. ICCF-20 2016 Tohoku University ** Sendai, Miyagi, Japan Jiro Kasagi, Yasuhiro Iwamura
  22. ICCF-21 2018 LENRIA ** Fort Collins, CO, U.S. Steven Katinsky, David Nagel

См. также

Примечания

Комментарии
Источники

Литература

Ссылки