Размерность Хаусдорфа, или хаусдорфова размерность — естественный способ определить размерность подмножества в метрическом пространстве. Размерность Хаусдорфа согласуется с нашими обычными представлениями о размерности в тех случаях, когда эти обычные представления есть. Например, в трёхмерном евклидовом пространстве хаусдорфова размерность конечного множества равна нулю, размерность гладкой кривой — единице, размерность гладкой поверхности — двум и размерность множества ненулевого объёма — трём.
Для более сложных (фрактальных) множеств размерность Хаусдорфа может не быть целым числом.
Пусть . Пусть — покрытие множества . Определим следующую функцию, в некотором смысле показывающую «размер» этого покрытия: .
Обозначим через «минимальный размер» -покрытия множества : , где инфимум берётся по всем -покрытиям множества .
Очевидно, что функция (нестрого) возрастает при уменьшении , поскольку при уменьшении мы только сжимаем множество возможных -покрытий. Следовательно, у неё есть конечный или бесконечный предел при :
с точностью до умножения на коэффициент: 1-мера Хаусдорфа для гладких кривых совпадает с их длиной; 2-мера Хаусдорфа для гладких поверхностей совпадает с их площадью; -мера Хаусдорфа множеств в совпадает с их -мерным объёмом.
убывает по . Более того, для любого множества существует[1][2][3] критическое значение , такое, что:
для всех
для всех
Значение может быть нулевым, конечным положительным или бесконечным.
Для самоподобных множеств размерность Хаусдорфа может быть вычислена явно. Неформально говоря, если множество разбивается на частей, подобных исходному множеству с коэффициентами , то его размерность является решением уравнения . Например,
размерность множества Кантора равна (разбивается на две части, коэффициент подобия 1/3),
↑Example 7.8 в Falconer, Kenneth J. Fractal geometry. Mathematical foundations and applications (англ.). — John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.